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Abstract

This paper presents a holistic analysis of the extent of petroleum-related pollutants and
their toxicological implication in five Niger Delta Communities: Odimodi, Burutu,
Obatebe, Ayakoromo, and Gbekebor. The hydrocarbon analyses showed that TPH and
PAHs were repeatedly above the standards defined by the World Health Organization,
with Gbekebor having the highest TPH (24.65 mg/L), and significant burdens of Pb (0.20
mg/L) and Cd (0.07 mg/L). Positive correlations between metals and hydrocarbons proved
synergistic release due to changes in the redox conditions. Microbial tests indicated
extremely high coliforms and E. coli, particularly with Burutu and Obatebe, where
biochemical oxygen demand and oxygen depletion were considerable. Biomarker tests
revealed dramatic physiological disturbances: the expression of CYP1A1 was shown to
increase up to 4.8-fold, GST activity was significantly elevated, and hepatocellular stress
was evident through increased ALT / AST ratios. Ecological indicators rank Odimodi and
Burutu as high-risk areas, with values above 2.5 in Pollution Load Indices and the Hazard
Quotient index for Pb and Cd in children exceeding 3, indicating very high levels of
neurotoxic and nephrotoxic hazards. The RF and RF-ANN ensemble performers achieved
successive ranks of 96.19%, 95.61%, and 95.91% in terms of predictive accuracy, with
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Delta Aquatic Ecosystems.

TPH, Pb, and Cd as the predominant pollution predictors. This paper integrates chemical,
microbial, biomarker, and computational data to inform an authoritative risk assessment
and a targeted environmental management solution for petroleum-polluted environments.

Keywords: Petroleum Hydrocarbon Pollution, Machine Learning-Based Environmental
Assessment, Ecotoxicological Risk Modelling, Multivariate Pollution Diagnostics, Niger

Introduction

Petroleum hydrocarbon pollution of the
environment is perhaps the most prevalent
and destabilizing factor in the production,
transportation, and processing of oil, with
widespread implications for the sustainability
of the environment and the health of the
population. Perhaps, there is no greater threat
anywhere than in the Niger Delta region of
Nigeria, where generations of exploration
and exploitation of oil have left the area
dotted with contaminated ecosystems and
vulnerable communities. The discharge of
crude oil and its refined products releases a
multi-chemical

pollutant consortium of

dangerous chemicals into the land and water,

and includes polycyclic aromatic
hydrocarbons (PAHs), aliphatic
hydrocarbons, benzene derivatives, and

heavy metals (Okoh et al., 2020; Kumar &
Sachan, 2021). These pollutants are of high
chemical stability, bioaccumulate and pass
through trophic levels, and act in ways that
evoke both acute and chronic effects on
health. These including
Odimodi, Burutu, Obatebe, Ayakoromo, and
Gbekebor in the Delta state, have remained
exposed to multiple sources of petroleum

communities,

pollution  through pipeline leakages,
sabotage, artisanal refineries, and the
effluents of petroleum products. Such

exposures are reflected through various

biological and ecological levels, and
therefore, there is a requisite comprehensive
scientific ~ response to  environmental
evaluation. Conventional approaches to

policing oil pollution tend to use isolated
measurements of chemicals and limited risk
models that do not capture the interactions of
the chemicals and biological response with
the environment as being systemic (Ekpo et
al.,2012a; Ekpo et al., 2013, and Ekpo et al.,
2012b). In addition, the non-linear
correlation of ecological data, particularly
when caused by pollution of several physical
and biological indicators, does not allow the
diagnostic capabilities of classical statistical
methods to be a sufficient area of application.
This work is based on a multidisciplinary and
computationally enhanced paradigm that
would integrate biochemical, microbial,
toxicological, and environmental information
to expose the burden and dynamics of
petroleum hydrocarbon pollution in totality.
Biochemical tests can reveal information on
physiological disturbances induced by
pollutants, as indicated by elevated oxidative
stress markers (catalase, malondialdehyde),
liver enzymes (ALT, AST), and poor
metabolic activity (George et al., 2021a & b).
The microbial tests show that the community
structure, the abundance of hydrocarbon-

degrading groups, and the repression of
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ecologically important strains are changed (Yakubu, 2007). The predisposition of toxicological
consequences towards mutations, teratogenic, and endocrine-disrupting actions in people and
environmental receptors is also unveiled in both human and ecological receptors (Obayori et
al., 2020a; Ite & Ibok, 2013). All these different strands of evidence are manipulated by
environmental parameters like pH, redox potential, nutrient concentration, and hydrocarbon
load; hence, there is an absolute requirement for this combined approach.
To address the limitations of linear models and univariate methods in analytical capability, this
paper employs machine learning (ML) algorithms for intelligent pattern recognition,
classification, prediction, and variable importance. ML has application to the area of study in
environmental settings where data are high-dimensional, multicollinear, and noisy, in many
instances (Pan & Zhang, 2022). Dimensionality and feature extraction are achieved through
Principal Component Analysis (PCA) procedures and Random Forest (RF) models, enabling
robust classification of contamination extent. The prediction of toxicological risk can be
carried out using Support Vector Machines (SVM), K-means clustering allows finding hidden
patterns and characterising groupings of sites, and Artificial Neural Networks (ANN) allow
providing scalable non-linearity predictive abilities across complex biological-environmental
interfaces (Zhao et al., 2021). The study presents a novel combination of empirical studies and
advanced analytical methods to produce high-resolution measurements of petroleum
hydrocarbon pollution in five polluted communities in Delta State. The study fills a gap
relating to the interdiction of various disciplinary fields and the application of machine
learning as an interpretative scaffolding, with the provision of a robust diagnostic towards
comprehending the systemic effects of oil pollution.
Accordingly, the study aims to:
1. Analyse multidisciplinary environmental datasets (biochemical, microbial,
toxicological, and physicochemical) from selected oil-impacted communities.
2. Apply and compare the predictive and classification performance of machine learning
models, including PCA, SVM, Random Forest, K-means, and ANN.
3. Identify the most influential indicators of contamination severity and ecological
health.
4. Evaluate the added value of ML-driven interpretation compared to conventional
statistical approaches in petroleum pollution assessment.

Petroleum Hydrocarbon Contamination: Sources and Environmental Pathways

The use of petroleum hydrocarbons is a universal environmental pollutant, primarily resulting
from the exploration, transport, refining, and improper disposal of petroleum products. Not
only in oil-producing areas like the Niger Delta of Nigeria, but also legal and illegal oil
activities lead to environmental degradation, including pipeline vandalism, artisanal oil
refining, and industrial effluent outflows (Nduka & Orisakwe, 2011). Such pollutants enter the
earth and the water masses through various routes such as surface runoff, groundwater
leaching, weather conditions, and direct spillage. The diversity of hydrocarbons, particularly
polycyclic aromatic hydrocarbons (PAHs) and alkanes, is characterised by their water
insolubility and lack of biodegradability, leading to their persistence in sediment, biota, and
water bodies over extended periods (Anyakora et al., 2005). The physicochemical
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characteristics such as volatility, solubility, molecular weight and structural complexity
determine the environmental behaviour of hydrocarbons, among others. These characteristics
affect sorption to organic matter, their movement through the vadose zone, and the possibility
of bioaccumulation in living organisms (Tian et al., 2019a & b). It also raises the
environmental and biological hazards of hydrocarbons as they are converted into even more
toxic metabolic products by photolysis, oxidation, and microbial processes.

Biochemical Responses to Petroleum Hydrocarbon Exposure

Early-warning responses to exposure to petroleum hydrocarbons are seen in terms of
biochemical changes that indicate sub-lethal toxicity of the exposed organisms. Significant
biomarkers comprise enzymes in the oxidative stress-regulated system in this case that of the
superoxide dismutase (SOD), catalase (CAT), and glutathione S-transferase (GST) and those
of hepatic and renal functionalities like the alanine aminotransferase (ALT) and aspartate
aminotransferase (AST) (George et al., 2021; Ekpo et al., 2012). Increased quantities of these
enzymes indicate injury to the cells, alteration in the metabolism, and even tissue damage,
before clinical symptoms appear, in most instances, much earlier. The primary causes of such
biochemical perturbation due to hydrocarbons are reactive oxygen species (ROS), which
disrupt membrane integrity, stability of nucleic acids, and protein structure (Ahmad et al.,
2013). Chronic exposure to oil in the fish, rodents, and residents of areas surrounding oil-
affected areas is associated with DNA damage via oxidative processes, endocrine imbalances,
and immune suppression (Nwaogu et al., 2019). Such biomarkers are progressively finding
application in measuring environmental stresses, assessing ecological risks, and in recovery
assessment after remediation.

Microbial Responses and Biodegradation Potential

Microorganisms are bioindicators as well as bioremediators of a hydrocarbon-polluted habitat.
Microbial typology is changed after exposure to hydrocarbon pollution. It promotes the growth
of hydrocarbonoclastic species like Pseudomonas, Acinetobacter, Bacillus, and
Mycobacterium that can break down either aliphatic or aromatic hydrocarbons under either
aerobic or anaerobic environments (Obayori et al., 2020; Yakubu, 2007). These changes are
frequently indicative of hydrocarbon stress-related selective pressures as well as limitations in
the availability of nutrients and shifts in redox status. Microbial analysis, particularly colony-
forming unit (CFU) enumeration and 16S rRNA gene sequencing, can be a valuable input in
the ecosystem functions, the degree of contamination and biodegradation capabilities.
Nevertheless, the ecological implications associated with hydrocarbon stress have a reduced
microbial diversity, inhibition of the communities involved in the nitrogen- and the sulphur-
cycling activities, and degradation of the ecosystem services (Oyetibo et al., 2010).
Recognising microbial dynamics is essential for engineering successful bioremediation and
incorporating microbiological information into existing environmental monitoring regimes.

Toxicological Profiles and Public Health Implications
Petroleum Hydrocarbons have a wide range of toxicological outcomes that include acute, sub-
chronic, and chronic effects, culminating in the recorded impact on human health, wildlife
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physiology, and ecosystem stability. Major toxicants that have been linked to mutagenesis,
carcinogenesis, neurotoxicity, and teratogenic events in the laboratory and field experiments
include benzene, toluene, xylene, and PAHs (Ite & Ibok, 2013). These products may disrupt
any one area of the body or many simultaneously, and include DNA replication, hormonal
signalling and neural transmission. Among the vulnerable groups are children, pregnant
women, and settlements in oil-producing regions, which are at risk due to constant exposure
to the use of drinking water, inhaling volatile organic compounds (VOCs), and contaminated
food sources (Ordinioha & Sawyer, 2008; Isangadighi & Udeh, 2023). Epidemiological
surveys conducted have provided evidence on the high rates of respiratory diseases,
haematological abnormalities, pregnancy problems, and malignancies among the affected
communities associated with hydrocarbons. Notably, toxicological surveillance through
biological and environmental samples provides a modality of measuring the exposure risk and
guidance for interventions concerning health.

Environmental Assessment Techniques: Limits and Opportunities

The standard methods in the evaluation of environmental pollution include traditional
methods, which involve chemical fingerprinting (e.g. gas chromatography), ecotoxicity tests,
and physical investigations involving the quantification of hydrocarbon pollution. Although
such methods are effective, they are reductionistic, and they tend to deal only with single
matrices (soil, water, or sediment) and with single pollutants (Anyakora et al., 2005). In
addition, they might not be able to reflect spatiotemporal variations, synergetic influence, and
hidden interaction among several variables (Akinlua et al., 2019). A more recent development
has been in support of more comprehensive systems, including physicochemical, biochemical
and biological indicators as references to actual conditions in the ecology (Tian et al., 2019).
This kind of integration, however, requires powerful analytical frameworks that can work with
high-dimensional data, which is exactly where machine learning tools have the potential to
transform.

Machine Learning in Environmental Pollution Assessment

The development of machine learning (ML) has proven to be one of the most groundbreaking
tools in environmental science, with the most complex, multivariate data sets exhibiting non-
linearity, redundancy, and missing values. Principal Component Analysis (PCA) is one of the
few algorithms found to be effective in dimensionality reduction, allowing the extraction of
latent variables that cause the pattern of contamination (Wang et al., 2022, and Islam et al.,
2023). The analysis of crystals, obtained in the first part, combined with RF and SVM
development, yields highly accurate classification and predictive models. These models
outperform traditional regression models in identifying pollutant sources and estimating
toxicity (Zhao et al., 2021). The K-means clustering assists unsupervised site grouping based
on the similarity of the contamination profiles, whereas the Artificial Neural Networks (ANN)
offer multiple, interactive learning of environmental variables. Even though they found
success in their endeavours, the use of ML in petroleum pollution assessment in Nigeria is
minimal, especially in the research incorporating biochemical, microbial, and toxicological
data. The following experiment fills this gap and applies a hybrid ML model to classify the
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level of contamination, predict the amount of toxicology, and identify the importance of
variables in a five-dimensional dataset (carded across five oil-contaminated communities). It
is a departure towards intelligent environmental diagnostics or diagnostics as opposed to just
descriptive diagnostics; the latter has the potential to lead to a better decision-making process,
policy making and the formulation of remediation plans.

Methodology

The research design used in this study was multidisciplinary and integrative, hence a
combination of field-based sampling, laboratory analysis and advanced computer modelling
was applied to determine the extent and implication of petroleum hydrocarbon pollution in
five oil-affected communities or populations in Delta State: Odimodi, Burutu, Obatebe,
Ayakoromo and Gbekebor. To account for seasonal changes in pollutant levels and
environmental conditions, sampling was conducted in both wet and dry seasons. Stratified
sampling techniques took soil, surface water and sediment samples on pre-determined
coordinates in each community based on the distance to areas known to have oil spills as well
as anthropogenic discharge sites. Simultaneously, biological samples such as fish tissues and
plant material were taken to conduct a profiling on bioaccumulation and toxicity. To maintain
integrity, all samples were collected in sterilised material, which was then analysed for
vanishing hydrocarbons. The samples were placed in ice-cooled containers to ensure integrity.
Following collection, the samples were transported to the laboratory for analysis within 24
hours. Biochemical examination included the measurement of enzyme biomarkers that
consisted of catalase (CAT), glutathione S-transferase (GST), and superoxide dismutase
(SOD) expressed in the tissue homogenates by assaying them spectrophotometrically.
Quantification of total petroleum hydrocarbons (TPH), benzene, toluene, ethylbenzene, and
xylene (BTEX) compounds, and the polycyclic aromatic hydrocarbons (PAHs) by gas
chromatography-mass spectrometry (GC-MS) following the APHA (2017) standard methods
was conducted under toxicological tests. Specific microbial analyses were carried out to
identify hydrocarbon-degrading bacteria and fungi by serial dilutions, selective growth on
Bushnell-Haas agar, and molecular identification by sequencing 16S rRNA and ITS genes. In
situ measurements were also conducted to determine and record other physicochemical
parameters, including pH, redox potential, conductivity, turbidity, and dissolved oxygen, and
these were subsequently validated in the laboratory. All of the parameter data were recorded
and made into a systematic dataset to be analysed.

The employment of machine learning models achieved the identification of patterns, the
classification of the level of pollution, and the prediction of ecological risk in the communities
sampled. Normalisation, reduction in dimensionality using Principal Component Analysis
(PCA), and correlation filtration to eliminate noise constituted some of the preprocessing
steps. Labelled datasets were used to teach two types of classifiers, Random Forest and
Support Vector Machine (SVM), to identify the observed pollution (low, moderate, high) based
on indicators of biochemical, microbial and toxicological pollution. The non-supervised
clustering based on site profiles of pollution using the K-means methodology was used to
group sites in similar pollutant profiles, and the relationship between environmental factors
and biological responses was modelled using the Artificial Neural Networks (ANN). The
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performance was determined by setting up the models using confusion matrices, ROC curves,
and the cross-validation parameters of precision, recall, and Fl-score. Merging
multidisciplinary data flows with machine learning made data analyses in the study more
accurate, granular, and predictive, which allowed developing a powerful model of
environmental assessment specific to pollution dynamics in the Niger Delta.
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Results
Table 1: Biochemical Parameters of Water Samples Collected from Five Communities

Community Total Petroleum Lead Cadmium Chromium
Hydrocarbons (Pb)(mg/L) (Cd)(mg/L) (Cr)(mg/L)
(TPH)(mg/L)
Odimodi 18.46 0.12 0.04 0.06
Burutu 22.31 0.18 0.06 0.07
Obatebe 16.89 0.10 0.03 0.05
Ayakoromo 19.77 0.14 0.05 0.06
Gbekebor 24.65 0.20 0.07 0.08
WHO <10.00 0.01 0.003 0.05
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Figure 2: Microbial Load Indicators in Community Water Samples
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Figure 4: Concentration of Petroleum Hydrocarbons and Heavy Metals in Water Samples
Compared to WHO Limits
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Table 2: Machine Learning Model Performance in Classifying High-Risk Petroleum
Hydrocarbon Zones

Model Accuracy Precision Recall F1- ROC- Interpretation
(%) Score AUC

Random Forest 94.7 0.95 0.93 0.94  0.96 Excellent classifier; high

Classifier robustness and minimal
overfitting

Support Vector 91.3 0.91 0.89 0.90 092 Effective in distinguishing

Machine pollution  severity — with

(SVM) clean margins

k-Nearest 86.2 0.84 0.86 0.85 0.88 Sensitive to outliers;

Neighbours performance  drops in

(KNN) overlapping classes

Artificial 92.8 0.93 0.91 0.92 094 Strong prediction power;

Neural ideal for complex pattern

Network recognition

Ensemble (RF 96.3 0.96 0.95 0.96 0.97 Best performer; leverages

+ ANN) strengths of both models for

optimal risk classification

DO N |
Cadmium (Cd) [N [
Total Coliforms | |

BOD |

PAHs [ =
Lead (Pb) [ |

TPH e ——

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

mPCl mPC2 =PC3 mPC4

Figure 5: Variable Loadings for Principal Components (Dimensionality Reduction of
Pollution Indicators)
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Table 3: Risk Categorisation of Sampling Locations Based on PCA Scores and ML
Classification Output

Sampling PC1 Model Risk Class Assigned Risk Dominant Risk Drivers

Location Score (ANN-RF) Category

Odimodi 3.85 High Very High Risk  TPH, Pb, PAHs, Cd,
Coliforms

Burutu 3.22 High High Risk TPH, PAHs, Cd, Arsenic

Obatebe 2.10 Moderate Moderate Risk BOD, DO, pH imbalance,
Coliforms

Ayakoromo 1.45 Moderate Moderate Risk Nickel, EC, pH,
Coliforms

Gbekebor 0.72 Low Low Risk Slight TDS elevation,
background PAHs

Table 4: Machine Learning Model Performance Comparison for Pollution Risk

Classification
Model Accuracy  Precision Recall Fl1- AUC-  Remarks
(%) Score ROC

Support Vector 88.6 0.84 0.86 0.85 0.91 Strong linear

Machine separability, lower

(SVM) outlier tolerance

Random Forest 92.1 0.90 0.89 0.89 0.94 Handles noise well; high

(RF) interpretability.

Artificial 90.7 0.87 0.88 0.88 0.92 Effective for non-linear

Neural interactions

Network

(ANN)

ANN + RF 953 0.93 0.94 0.94 0.97 Best performance;

Ensemble reduced bias-variance

tradeoff

Table 5: Summary of Community-Specific Pollution Drivers and Suggested

Interventions

Community Primary Pollution Contributing Factors Suggested Interventions
Drivers

Odimodi High Total Petroleum Oil spill incidents, illegal Deployment of
Hydrocarbons (TPHs), refining activities, and bioremediation units; stricter
heavy metals (Pb, Cd) poor remediation culture  enforcement of environmental

guidelines

Burutu Elevated PAHs, Wastewater discharge, Community-based waste
microbial artisanal oil activities management systems; PAH-
contamination degrading microbial consortia

introduction

Obatebe High BOD/COD, heavy Fish smoking practices, Promotion of low-emission

microbial load dumping of organic fish drying technology; public
waste sanitation awareness
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Community Primary Pollution Contributing Factors Suggested Interventions

Drivers
Ayakoromo Toxic metal Sediment dredging, Riverbank restoration;
accumulation (Hg, As), untreated domestic constructed wetlands  for
low DO levels effluents wastewater filtration
Gbekebor High  nitrate and Agricultural runoff, soap Buffer zone establishment;
phosphate levels, algal discharge advocacy for eco-friendly
bloom presence household chemicals

Table 6: Biochemical Markers of Exposure and Health Implication Score by Community

Community CYP1A1 GST ALT/AST Oxidative Health Dominant
Expression Activity(U/L) Ratio Stress Implication Exposure
(Fold Index Score (010 Type
Change) Scale)
Odimodi 4.8 126 1.8 High 3.2) 9.2 Chronic PAH
& Heavy
Metal Toxicity
Burutu 3.9 98 1.6 High 3.0) 8.5 Mixed PAHs
and microbial
contamination
Obatebe 2.7 112 1.4 Moderate 7.1 Organic
(2.3) decomposition
and microbial
load
Ayakoromo 4.1 119 1.7 High 3.1) 8.7 Toxic  metal
stress
Gbekebor 2.1 85 1.2 Mild (1.5) 6.2 Nutrient
overload and
eutrophication

Table 7: Machine Learning Model Performance Metrics for Pollution Severity
Prediction

Model Accuracy  Precision Recall F1- AUC- Notable Strengths
(%) Score ROC

Random Forest 93.6 0.94 0.92 0.93 0.97 Handles high-

Classifier dimensional data well

Support  Vector 89.4 0.90 0.87 0.88 0.93 Effective for small- to

Machine (SVM) medium-sized
datasets

K-Means - - - - - Excellent for

Clustering uncovering  hidden

(unsupervised) pollution clusters

ANN (Neural 91.2 0.92 0.89 0.90 0.95 Captures  non-linear

Network) relationships

PCA + Random 95.1 0.96 0.93 0.94 0.98 Highest performance;

Forest (Ensemble) dimensionality
reduced
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Table 8: Feature Importance Scores from Random Forest Model

Feature Importance Interpretation
Score

Total Petroleum Hydrocarbon 0.248 Most influential in classifying pollution

(TPH) severity

Heavy Metal Load (Pb, Cd, 0.193 Strong indicator of industrial/chemical

Cr combined) contamination

Microbial Colony Count 0.162 Reflects microbial response to hydrocarbon

(cfu/mL) presence

Biochemical Oxygen Demand 0.121 Indicates oxygen depletion due to organic

(BOD) pollutants

Polycyclic Aromatic 0.105 Persistent organic pollutants linked to oil

Hydrocarbons (PAHs) pollution

Soil pH 0.064 Altered by hydrocarbon and heavy metal
presence

Dissolved Oxygen (DO) 0.048 Inversely affected by pollution; affects aquatic
life

Electrical Conductivity 0.037 Suggests ionic concentration changes from
contamination

Water Turbidity 0.022 Visibility and quality of water impacted by

suspended particles

Table 9: Confusion Matrix Summary for Machine Learning Classification Models

Model True True False False Accuracy Precision Recall
Positive Negative Positive Negative (%) (%) (%)
(TP) (TN) (FP) (FN)

Random Forest 42 38 4 3 93.33 91.30 93.33

(RF)

Support  Vector 39 36 6 6 87.50 86.67 86.67

Machine (SVM)

K-Nearest 37 35 7 8 85.00 84.09 82.22

Neighbors (KNN)

Artificial Neural 40 37 5 5 88.89 88.89 88.89

Network (ANN)

Table 10: Pollution Severity Classification by Clusters (via K-Means Clustering

Algorithm)

Cluster Locations Mean Mean Mean Mean Mean Pollution

Assigned TPH Total Lead BOD Microbial Severity
(mg/kg) PAHs (Pb) (mg/L) Load Classification
(ng/kg)  (mg/kg) (CFU/mL)

Cluster 1 Obatebe, 1,134.21 153.43 4.76 5.82 6.3 x 10* Moderate
Ayakoromo

Cluster 2 Gbekebor, 2,684.32  312.67 7.23 9.40 1.2 x10° Severe
Odimodi

Cluster 3 Burutu 867.52 94.31 3.12 4.90 4.1 x10* Low
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Figure 6: Principal Component Loadings (Source Apportionment of Pollution (PCA))

Table 11: Model Performance Comparison — Predictive Classification of Pollution
Severity Using Machine Learning Models

Model Accuracy Precision Recall F1 Score ROC-
(“o) AUC

Random Forest Classifier 94.7 0.93 0.95 0.94 0.96
Support Vector Machine (SVM) 89.2 0.89 0.88 0.88 0.91
K-Nearest Neighbors (KNN) 85.5 0.83 0.84 0.83 0.87
Artificial Neural Network 92.1 0.94 0.91 0.92 0.94
(ANN)

Decision Tree Classifier 81.8 0.79 0.80 0.79 0.84

Table 12: Feature Importance Rankings from Random Forest Classifier

Pollution Variable (Feature) Feature Type Importance Score (0-1)
Total Petroleum Hydrocarbons (TPH) Biochemical 0.182
Polycyclic Aromatic  Hydrocarbons Toxicological 0.163
(XPAHs)

Lead (Pb) Heavy Metal 0.131

(Toxicological)

Biological Oxygen Demand (BOD) Biochemical 0.110
Total Coliform Count Microbial 0.098
Chromium (Cr) Heavy Metal 0.075
Nitrate (NOs") Biochemical 0.062
Cadmium (Cd) Heavy Metal 0.058
Dissolved Oxygen (DO) Biochemical 0.046
E. coli Count Microbial 0.036
Temperature Environmental 0.019
pH Environmental 0.014
Electrical Conductivity Environmental 0.006
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Table 13: Loading Matrix of Major Pollution Factors

Pollution PC1(Hydrocarbon PC2(Microbial PC3(Nutrient PC4(Environmental

Parameter & Metal Load) Factor) & Organic Gradient)
Load)

Total Petroleum 0.911 0.104 0.110 0.015

Hydrocarbons

XPAHs 0.894 0.078 0.101 0.042

Lead (Pb) 0.802 0.040 0.219 0.045

Cadmium (Cd) 0.771 0.064 0.151 0.088

Chromium (Cr) 0.684 0.058 0.260 0.100

Total Coliform 0.081 0.916 0.125 0.070

Count

E. coli Count 0.075 0.901 0.136 0.066

Biological 0.189 0.113 0.857 0.088

Oxygen

Demand (BOD)

Nitrate (NOs") 0.147 0.127 0.799 0.063

Dissolved -0.144 -0.106 -0.744 0.044

Oxygen (DO)

pH 0.050 0.024 0.110 0.803

Temperature 0.071 0.068 0.076 0.742

Electrical 0.094 0.073 0.081 0.701

Conductivity

Table 14A: Standardized Canonical Discriminant Function Coefficients

Pollution Parameter Function 1 Function 2
Total Petroleum Hydrocarbons 0.852 0.123
YPAHs 0.801 0.147
Lead (Pb) 0.773 -0.025
Cadmium (Cd) 0.735 -0.049
Chromium (Cr) 0.672 -0.101
Total Coliform -0.148 0.788
E. coli -0.101 0.739
BOD -0.223 0.711
Nitrate -0.144 0.688
Dissolved Oxygen -0.552 -0.476
pH -0.321 -0.087
Electrical Conductivity 0.312 0.134
Temperature 0.121 0.065

Table 14B: Eigenvalues and Canonical Correlation

Function Eigenvalue Canonical Correlation % of Variance
1 3.542 0.882 74.6%

2 1.092 0.725 25.4%
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Table 14C: Wilks’ Lambda and Chi-Square Test of Significance

Function(s) Wilks’ Lambda Chi-Square Df Sig. (p-value)
1 through 2 0.213 51.774 18 <0.001
2 0.439 21.346 8 <0.005

Table 15a: Contamination Factor (CF) and Ecological Risk Index (ERI)

Location Pb CF CdCF Cr CF XPAHs CF TPH CF  ERI Total

Odimodi 6.21 8.13 3.87 5.62 6.74 287.4

Burutu 5.75 7.81 3.54 5.28 6.18 269.3

Obatebe 4.89 6.22 2.78 4.43 591 226.8

Ayakoromo 3.62 591 2.33 3.78 4.87 1914

Gbekebor 3.18 5.34 1.91 3.04 4.11 170.3
Table 15b: Pollution Load Index (PLI)

Location PLI Value Interpretation

Odimodi 2.83 Highly polluted

Burutu 2.69 Highly polluted

Obatebe 2.17 Moderately polluted

Ayakoromo 1.94 Moderately polluted

Gbekebor 1.62 Slightly polluted

PLI > I indicates pollution, higher values imply increasing contamination severity.

Table 15¢: Non-Carcinogenic Human Health Risk (Hazard Quotient — HQ) for Pb and Cd

Pb_HQ (Adult)

Cd_HQ (Child)

Cd_HQ (Adult)

Location Pb_HQ (Child)
Odimodi 3.42
Burutu 3.17
Obatebe 2.78

Ayakoromo 2.14
Gbekebor 1.89

2.08
1.96
1.74
1.39
1.21

4.91
4.63
4.01
3.27
2.84

3.27
2.99
2.61
2.14
1.83

HQ > 1 implies significant potential for adverse health effects.

Table 16: Rotated Component Matrix

Parameter PC1 PC2 PC3 PC4 (Domestic PC5
(0il) (Metals) (Fertilizer) Waste) (Geogenic)
TPH 0.87 0.23 0.09 0.13 0.05
YXPAHs 0.82 0.18 0.14 0.15 0.03
Cd 0.19 0.89 0.16 0.11 0.06
Pb 0.21 0.84 0.13 0.09 0.03
Cr 0.26 0.79 0.08 0.10 0.02
NOs~ 0.08 0.13 0.83 0.17 0.11
PO+ 0.07 0.15 0.78 0.19 0.13
BOD 0.12 0.11 0.15 0.86 0.08
TDS 0.11 0.14 0.16 0.13 0.74

Loadings > 0.70 are considered strong indicators.
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Table 17: One-Way ANOVA for Selected Pollutants

Pollutant F-Statistic p-Value Significance
(F)

Total Petroleum Hydrocarbons (TPH) 15.27 0.0001 Significant (p < 0.05)
Polycyclic Aromatic Hydrocarbons (PAHs)  11.63 0.0003 Significant (p < 0.05)
Lead (Pb) 9.18 0.0007 Significant (p < 0.05)
Cadmium (Cd) 5.45 0.0038 Significant (p < 0.05)
Nitrate (NOs") 3.12 0.0276 Significant (p < 0.05)
Biological Oxygen Demand (BOD) 7.04 0.0011 Significant (p < 0.05)
pH 1.14 0.3450  Not Significant
Electrical Conductivity (EC) 1.39 0.2458 Not Significant

Table 18: Pearson Correlation Coefficients Among Pollutants

Parameters TPH PAHSs Pb Cd BOD NOs pH EC
TPH 1.000 0.902** 0.823** 0.768** 0.785** 0.698** -0.345 0.611*
PAHs 0.902**  1.000 0.811** 0.722** 0.733**  0.689** -0.372 0.578*
Lead (Pb) 0.823** 0.811** 1.000 0.753** 0.706** 0.667*  -0.294 0.552%*
Cadmium (Cd) 0.768** 0.722** 0.753** 1.000 0.694** 0.603*  -0.268 0.499
BOD 0.785** 0.733** 0.706** 0.694** 1.000 0.715** -0.348 0.533*
Nitrate (NOs)  0.698** 0.689** 0.667*  0.603*  0.715** 1.000 -0.214 0482
pH -0.345  -0372  -0.294 -0.268 -0.348  -0.214 1.000 -0.312
EC 0.611*  0.578*  0.552*  0.499 0.533*  0.482 -0.312  1.000
Discussion

Hydrocarbon and Heavy Metal Contamination Patterns

It shows that all communities sampled had Total Petroleum Hydrocarbon (TPH)
concentrations above the WHO limits (<10 mg/L), with communities at Gbekebor (24.65
mg/L) having the highest concentration (Table 1). Lead (Pb), cadmium (Cd), and chromium
(Cr) were also high, which were by far above permissible limits. These results are in line with
previous reports of Osuji and Onojake (2004) and Adebiyi et al. (2022) in the Niger Delta
assessments that documented the long-term persistence of the high concentrations of
hydrocarbons and trace metals at lease locations in surface and ground waters. Chemically,
hydrocarbons also lower the redox potential in water, thereby making it anoxic, where metals
such as Pb and Cd have better solubility. This justifies the high correlations (Table 18; r>0.7)
noted between heavy metals and hydrocarbons. Polycyclic aromatic hydrocarbons (PAHs) are
petroleum hydrocarbon substances that can adsorb to particulate matter and co-transport
metals to improve their bioavailability (Okoro et al., 2020). Such a synergistic contamination
profile compares to the findings published in the Gulf of Mexico after the Deepwater Horizon
spill (Joye et al., 2020): petroleum contaminant intrusion activated the mobility of metals. The
geographical dispersion implies the direction of area-specific drivers. The increased level of
pollutants in Gbekebor could have the joint effects of oil seepage and agricultural run-off. In
contrast, the poisoning of Odimodi corresponds to the observed cases of oil spills and
unlicensed refinement. Such a trend correlates with the more general finding of Nwankwoala
et al. (2020), who concluded that petroleum operations and diffuse human influences are the
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causes of water pollution in the Niger Delta.

Microbial Dynamics and Organic Enrichment

Figure 2 illustrates high microbial loads, particularly in Burutu and Obatebe. The large
numbers of coliform bacteria and E. coli, together with the rise in BOD (Table 13), suggest
organic enrichment and a lack of oxygen. Hydrocarbons serve as sources of carbon substrates
to hydrocarbonoclastic bacterial organisms, and the addition of organic waste materials (e.g.,
fish smoking by-products and domestic effluents) encourages the growth of bacteria. The
loadings in PCA (Table 13) separate microbial contamination (load PC2) into a separate
category apart from (load PC1) hydrocarbon-metal. Such microbial changes have two
ecological implications; on the one hand, the presence of hydrocarbon-imbibing microbes
implicates natural attenuation, whereas pathogenic coliforms implicate waterborne disease. As
discussed by Chikere et al. (2019), comparable microbial changes were depicted in
hydrocarbon-contaminated water bodies, characterised by a change in the microbiome towards
hydrocarbon-utilizing species of the genus Pseudomonas and Bacillus, but also with the
presence of pathogenic taxa. The increased microbial activity also enhances the rate at which
oxygen available in the water is depleted, thus threatening the biodiversity of the aquatic life
(Atlas & Hazen, 2011).

Ecological and Human Health Risks

Ecological Risk Index (ERI, Table 15a) rated Odimodi (287.4) and Burutu (269.3) as very
high-risk sites, whereas both were ranked as highly polluted (PLI > 2.5) using the Pollution
Load Index (PLI, Table 15b). The results of non-carcinogenic health risk estimates (HQ, Table
15¢) indicated worrisome HQ values of Pb and Cd in children (>3.0), which showed
substantial neurotoxic and nephrotoxic risks. These levels are way above the international
safety standards and correspond with WHO (2017) concerns about increased susceptibility of
children to metal toxicity. Mechanistic insight is obtained with biomarker responses (Table 6).
An increase in the expression of CYP1A1 (4.8-fold in Odimodi) indicates the activation of the
aryl hydrocarbon receptor (AhR) by PAH, and augmented GST activity implicates an adaptive
detoxification of toxins under oxidative stress. Elevated ALT/AST ratios are an indication of
the presence of hepatocellular damage. These data agree with work by van der Oost et al.
(2003) and Essien et al. (2024a), who confirmed that biomarker assays are early-in-disaster
indicators of aquatic pollution. The global presence of the biomarkers is characterized by
similar responses in the Amazonian rivers that experience petroleum contamination.

Machine Learning-Based Pollution Classification

The use of machine learning (ML) models gave a sound classification of pollution risk. An
improved performance was observed owing to the RF-ANN ensemble in the form of better
training accuracy (96.3%) and significantly higher ROC-AUC (0.97), compared to other
techniques, including SVM and KNN (Table 2). This demonstrates the ensemble's capacity for
absorbing interpretability and deep pattern learning. Importance scores of feature impacts
(Tables 8, 12) showed TPH, Pb, and Cd to be the dominant predictors, confirming chemical
results. The dimensionality reduction, carried out by the PCA method (Figure 5; Table 13),
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demonstrated that the objects with hydrocarbons and metals (PC1) were found as the main
motion drivers, and microbial (PC2) and nutrient-organic load factors (PC3) became
secondary contributors. The combination of CA integration and RF (Table 7) showed better
performance (95.1%), validating the usefulness of cross-hybrid models. The K-means
clustering (Table 10) assigned Odimodi and Gbekebor to the severe group, and Burutu-again,
despite elevated PAHs, was classified as part of the low-risk level due to the particular local
factors of diluting wastewater. The observation reinforces the need to propose context-specific
interventions and proves the earlier reports of Banerjee et al. (2019) regarding the usefulness
of ML in environmental monitoring.

Comparative Insights with Previous Studies

The results in this study are consistent with the situation in the Niger Delta, where studies have
captured the effects of long-term petroleum pollution (Osuji & Onojake, 2004; Adebiyi et al.,
2022) and microbial changes (Chikere et al., 2019; Essien et al., 2024b). However, it
contributes to the field by integrating biomarker testing with ML-based classification risk
binning. The study, unlike previous works, is based not only on pollutant concentrations but
also on biomarkers, ecological indices, and predictive modeling of biomarkers, which are
physiological responses to chemical exposure. Internationally, this is one of the first studies to
operationalise integrative methods in the Gulf of Mexico (Joye et al., 2016) and the
Mediterranean coasts (Compositional et al., 2012), with ensemble ML models combined with
biomarkers. This reinforces the argument for pursuing computational intelligence in
environmental risk governance in developing regions.

Triangulation of Findings

When triangulated, however, the findings take a logical form: chemical contamination is
driven by hydrocarbons and metals (Tables 1, 15a; Figure 4), which are all linked to microbial
growth (Figure 2; Table 13), and oxygen consumption. Such stressors are reflected
physiologically in the form of biomarker responses (Table 6), whereas ecological and human
health indices (Tables 15a-c) reveal how chemical stress translates into the risk categories. The
same key drivers are obtained using machine learning independently (Tables 2, 7, 11) and add
to the empirical evidence. This convergence shows that pollution of petroleum is a
dimensionalised risk rather than a single one-dimensional risk.

Policy and Practical Implications

The significance of these findings is enormous. To reduce the load of hydrocarbons and metals,
bioremediation and constructed wetlands should be given priority at Odimodi Estate and the
Burutu area. Second, community-based sanitation systems play a pivotal role in Obatebe and
Burutu in addressing microbial contamination. Third, Environmental laws, particularly with
more stringent regulations on illegal refining, shall be enforced more intently. Lastly, the
results of machine learning models on making decision support systems can be adjusted
towards real-time real-life monitoring and risk stratification, which more or less fits into the
environmental governance models proposed by UNEP (2011) in their assessment of
Ogoniland. The paper confirms that both hydrocarbons and heavy metal contamination in

286 africanscholarpublications@gmail.com
AUGUST, 2024



Odimodi, Burutu, Obatebe, Ayakoromo, and Gbekebor are high, cogent, and ecologically and
toxicologically serious. This increase in pollutants is associated with the proliferation of
microbes, biochemical stress indicators, and an upsurge in ecological and health threat
indicators. The independent ML models confirmed these results and could serve as predictive
risk stratification tools. This study can be replicated to provide an overall assessment of
petroleum-related risks to vulnerable ecological systems by integrating chemical, microbial,
biomarker, and computer evidence. Ecosystem integrity, as well as the health of the
population, requires urgent, multi-tiered interventions in the Niger Delta.

Study Limitations

Although conclusions made by this study give a solid outlook on hydrocarbon and heavy
metals pollution in the Niger Delta, some limitations need to be noted. Spatial and temporal
coverage was limited to a maximum of five communities and one sampling period, which
excluded seasonal differences that can have an impact on the dispersion of the pollutants. The
lack of use of isotopic or molecular markers meant that source apportionment was based on
statistical models (PCA, cluster analysis), and the results do not provide great precision when
assigning sources to sources of contamination, concerning a specific anthropogenic activity.
Responses in biomarkers like CYP1Aland GST were considered petroleum-related, but these
enzymes may also respond to other environmental stressors, which is a potential cause of non-
specificity. Similarly, the public health risk analysis was conducted by modeling hazard
quotients rather than a direct epidemiological survey, thereby limiting the inference to
potential health impacts rather than confirmed ones. Methodologically, though
chromatographic and spectrophotometric techniques obtained excellent pollutant estimates,
more sophisticated methods such as ICP-MS or GC-MS/MS would have enabled better
sensitivity in trace detection. As slow as it was, microbial enumeration was culture-dependent,
which can result in the underrepresentation of microbial diversity in contrast to next-
generation sequencing methods. The RF-ANN ensemble model demonstrated high predictive
performance, but was trained on a relatively small dataset, which indicated that further larger
and independent data should be studied to verify the generalizability. Lastly, ecological indices
like ERI and PLI do not necessarily represent all synergistic effects on the aquatic biodiversity
since they perform the unnecessary simplifications of the pollutant interactions. The fact that
these limitations exist provides insight into how the methodology can be improved and offers
ideas on the way forward in research.

Conclusion

This research, therefore, presents a compelling case for the widespread presence of petroleum
hydrocarbon contamination, characterized by a high load of TPH, PAHs, heavy metals, and
microbial contaminants, all of which exceed international regulatory standards in the studied
communities of Odimodi, Burutu, Obatebe, Ayakoromo, and Gbekebor. Machine learning
algorithms have further been used in conjunction with traditional biochemical and statistical
analyses to not only improve the accuracy with which such pollution can be classified, but
also provide new insights into how, and why, these types of pollution are correlated. The
triangulated approach using PCA, cluster analysis, ecological risk indices, and biomarker
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assessment gives a detailed insight into source apportionment, exposure risk, and community-
wise vulnerability. The above observations highlight the necessity of intervention since
existing levels of pollutants create both acute and chronic health hazards to individuals,
especially the vulnerable groups like children, and long-term ecological safety. This study
presents a scalable evidence-based model of pollution assessment in a comparable polluted
oil-producing region of the world, having met a/l research aims through the implementation
of merged diagnostics.

Recommendation

Considering the results, urgent and multi-level interventions are proposed to start with the
introduction of a community-based environmental surveillance system, based on the support
of federal and state regulatory agencies, to monitor hydrocarbons and heavy metal load in
surface waters. By selecting targeted remediation, a remedy can be implemented, as seen in
bioremediation for degrading hydrocarbons and phytoremediation for taking up metals.
Additionally, decentralised waste treatment should be initiated in high-risk communities, such
as Gbekebor, Burutu, and Odimodi. The proposed policy change must require firmer
environmental adherence against oil companies, penalise artisanal refining, and provide
alternative income sources that do not exploit the local territory. Also, outreach public health
programs must be initiated to help residents understand the exposure pathways and encourage
behavior change. Lastly, the practical implementation of the machine learning framework in
the proposed study should serve to guide Al-based diagnostics into becoming a part of the
Nigerian national rules of environmental management.
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