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Abstract 
This paper presents a holistic analysis of the extent of petroleum-related pollutants and 

their toxicological implication in five Niger Delta Communities: Odimodi, Burutu, 

Obatebe, Ayakoromo, and Gbekebor. The hydrocarbon analyses showed that TPH and 

PAHs were repeatedly above the standards defined by the World Health Organization, 

with Gbekebor having the highest TPH (24.65 mg/L), and significant burdens of Pb (0.20 

mg/L) and Cd (0.07 mg/L). Positive correlations between metals and hydrocarbons proved 

synergistic release due to changes in the redox conditions. Microbial tests indicated 

extremely high coliforms and E. coli, particularly with Burutu and Obatebe, where 

biochemical oxygen demand and oxygen depletion were considerable. Biomarker tests 

revealed dramatic physiological disturbances: the expression of CYP1A1 was shown to 

increase up to 4.8-fold, GST activity was significantly elevated, and hepatocellular stress 

was evident through increased ALT / AST ratios. Ecological indicators rank Odimodi and 

Burutu as high-risk areas, with values above 2.5 in Pollution Load Indices and the Hazard 

Quotient index for Pb and Cd in children exceeding 3, indicating very high levels of 

neurotoxic and nephrotoxic hazards. The RF and RF-ANN ensemble performers achieved 

successive ranks of 96.19%, 95.61%, and 95.91% in terms of predictive accuracy, with 
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TPH, Pb, and Cd as the predominant pollution predictors. This paper integrates chemical, 

microbial, biomarker, and computational data to inform an authoritative risk assessment 

and a targeted environmental management solution for petroleum-polluted environments. 

 

Keywords: Petroleum Hydrocarbon Pollution, Machine Learning-Based Environmental 

Assessment, Ecotoxicological Risk Modelling, Multivariate Pollution Diagnostics, Niger 

Delta Aquatic Ecosystems. 

 
 

 

Introduction 
Petroleum hydrocarbon pollution of the 

environment is perhaps the most prevalent 

and destabilizing factor in the production, 

transportation, and processing of oil, with 

widespread implications for the sustainability 

of the environment and the health of the 

population. Perhaps, there is no greater threat 

anywhere than in the Niger Delta region of 

Nigeria, where generations of exploration 

and exploitation of oil have left the area 

dotted with contaminated ecosystems and 

vulnerable communities. The discharge of 

crude oil and its refined products releases a 

multi-chemical pollutant consortium of 

dangerous chemicals into the land and water, 

and includes polycyclic aromatic 

hydrocarbons (PAHs), aliphatic 

hydrocarbons, benzene derivatives, and 

heavy metals (Okoh et al., 2020; Kumar & 

Sachan, 2021). These pollutants are of high 

chemical stability, bioaccumulate and pass 

through trophic levels, and act in ways that 

evoke both acute and chronic effects on 

health. These communities, including 

Odimodi, Burutu, Obatebe, Ayakoromo, and 

Gbekebor in the Delta state, have remained 

exposed to multiple sources of petroleum 

pollution through pipeline leakages, 

sabotage, artisanal refineries, and the 

effluents of petroleum products. Such 

exposures are reflected through various 

biological and ecological levels, and 

therefore, there is a requisite comprehensive 

scientific response to environmental 

evaluation. Conventional approaches to 

policing oil pollution tend to use isolated 

measurements of chemicals and limited risk 

models that do not capture the interactions of 

the chemicals and biological response with 

the environment as being systemic (Ekpo et 

al., 2012a; Ekpo et al., 2013, and Ekpo et al., 

2012b). In addition, the non-linear 

correlation of ecological data, particularly 

when caused by pollution of several physical 

and biological indicators, does not allow the 

diagnostic capabilities of classical statistical 

methods to be a sufficient area of application.  

This work is based on a multidisciplinary and 

computationally enhanced paradigm that 

would integrate biochemical, microbial, 

toxicological, and environmental information 

to expose the burden and dynamics of 

petroleum hydrocarbon pollution in totality. 

Biochemical tests can reveal information on 

physiological disturbances induced by 

pollutants, as indicated by elevated oxidative 

stress markers (catalase, malondialdehyde), 

liver enzymes (ALT, AST), and poor 

metabolic activity (George et al., 2021a & b). 

The microbial tests show that the community 

structure, the abundance of hydrocarbon-

degrading groups, and the repression of   
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ecologically important strains are changed (Yakubu, 2007). The predisposition of toxicological 

consequences towards mutations, teratogenic, and endocrine-disrupting actions in people and 

environmental receptors is also unveiled in both human and ecological receptors (Obayori et 

al., 2020a; Ite & Ibok, 2013). All these different strands of evidence are manipulated by 

environmental parameters like pH, redox potential, nutrient concentration, and hydrocarbon 

load; hence, there is an absolute requirement for this combined approach. 

To address the limitations of linear models and univariate methods in analytical capability, this 

paper employs machine learning (ML) algorithms for intelligent pattern recognition, 

classification, prediction, and variable importance. ML has application to the area of study in 

environmental settings where data are high-dimensional, multicollinear, and noisy, in many 

instances (Pan & Zhang, 2022). Dimensionality and feature extraction are achieved through 

Principal Component Analysis (PCA) procedures and Random Forest (RF) models, enabling 

robust classification of contamination extent. The prediction of toxicological risk can be 

carried out using Support Vector Machines (SVM), K-means clustering allows finding hidden 

patterns and characterising groupings of sites, and Artificial Neural Networks (ANN) allow 

providing scalable non-linearity predictive abilities across complex biological-environmental 

interfaces (Zhao et al., 2021). The study presents a novel combination of empirical studies and 

advanced analytical methods to produce high-resolution measurements of petroleum 

hydrocarbon pollution in five polluted communities in Delta State. The study fills a gap 

relating to the interdiction of various disciplinary fields and the application of machine 

learning as an interpretative scaffolding, with the provision of a robust diagnostic towards 

comprehending the systemic effects of oil pollution.  

Accordingly, the study aims to: 

1. Analyse multidisciplinary environmental datasets (biochemical, microbial, 

toxicological, and physicochemical) from selected oil-impacted communities. 

2. Apply and compare the predictive and classification performance of machine learning 

models, including PCA, SVM, Random Forest, K-means, and ANN. 

3. Identify the most influential indicators of contamination severity and ecological 

health. 

4. Evaluate the added value of ML-driven interpretation compared to conventional 

statistical approaches in petroleum pollution assessment. 

 

Petroleum Hydrocarbon Contamination: Sources and Environmental Pathways 

The use of petroleum hydrocarbons is a universal environmental pollutant, primarily resulting 

from the exploration, transport, refining, and improper disposal of petroleum products. Not 

only in oil-producing areas like the Niger Delta of Nigeria, but also legal and illegal oil 

activities lead to environmental degradation, including pipeline vandalism, artisanal oil 

refining, and industrial effluent outflows (Nduka & Orisakwe, 2011). Such pollutants enter the 

earth and the water masses through various routes such as surface runoff, groundwater 

leaching, weather conditions, and direct spillage. The diversity of hydrocarbons, particularly 

polycyclic aromatic hydrocarbons (PAHs) and alkanes, is characterised by their water 

insolubility and lack of biodegradability, leading to their persistence in sediment, biota, and 

water bodies over extended periods (Anyakora et al., 2005). The physicochemical 
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characteristics such as volatility, solubility, molecular weight and structural complexity 

determine the environmental behaviour of hydrocarbons, among others. These characteristics 

affect sorption to organic matter, their movement through the vadose zone, and the possibility 

of bioaccumulation in living organisms (Tian et al., 2019a & b). It also raises the 

environmental and biological hazards of hydrocarbons as they are converted into even more 

toxic metabolic products by photolysis, oxidation, and microbial processes.  

 

Biochemical Responses to Petroleum Hydrocarbon Exposure 

Early-warning responses to exposure to petroleum hydrocarbons are seen in terms of 

biochemical changes that indicate sub-lethal toxicity of the exposed organisms. Significant 

biomarkers comprise enzymes in the oxidative stress-regulated system in this case that of the 

superoxide dismutase (SOD), catalase (CAT), and glutathione S-transferase (GST) and those 

of hepatic and renal functionalities like the alanine aminotransferase (ALT) and aspartate 

aminotransferase (AST) (George et al., 2021; Ekpo et al., 2012). Increased quantities of these 

enzymes indicate injury to the cells, alteration in the metabolism, and even tissue damage, 

before clinical symptoms appear, in most instances, much earlier. The primary causes of such 

biochemical perturbation due to hydrocarbons are reactive oxygen species (ROS), which 

disrupt membrane integrity, stability of nucleic acids, and protein structure (Ahmad et al., 

2013). Chronic exposure to oil in the fish, rodents, and residents of areas surrounding oil-

affected areas is associated with DNA damage via oxidative processes, endocrine imbalances, 

and immune suppression (Nwaogu et al., 2019). Such biomarkers are progressively finding 

application in measuring environmental stresses, assessing ecological risks, and in recovery 

assessment after remediation. 

 

Microbial Responses and Biodegradation Potential 

Microorganisms are bioindicators as well as bioremediators of a hydrocarbon-polluted habitat. 

Microbial typology is changed after exposure to hydrocarbon pollution. It promotes the growth 

of hydrocarbonoclastic species like Pseudomonas, Acinetobacter, Bacillus, and 

Mycobacterium that can break down either aliphatic or aromatic hydrocarbons under either 

aerobic or anaerobic environments (Obayori et al., 2020; Yakubu, 2007). These changes are 

frequently indicative of hydrocarbon stress-related selective pressures as well as limitations in 

the availability of nutrients and shifts in redox status. Microbial analysis, particularly colony-

forming unit (CFU) enumeration and 16S rRNA gene sequencing, can be a valuable input in 

the ecosystem functions, the degree of contamination and biodegradation capabilities. 

Nevertheless, the ecological implications associated with hydrocarbon stress have a reduced 

microbial diversity, inhibition of the communities involved in the nitrogen- and the sulphur-

cycling activities, and degradation of the ecosystem services (Oyetibo et al., 2010). 

Recognising microbial dynamics is essential for engineering successful bioremediation and 

incorporating microbiological information into existing environmental monitoring regimes. 

 

Toxicological Profiles and Public Health Implications 

Petroleum Hydrocarbons have a wide range of toxicological outcomes that include acute, sub-

chronic, and chronic effects, culminating in the recorded impact on human health, wildlife 
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physiology, and ecosystem stability. Major toxicants that have been linked to mutagenesis, 

carcinogenesis, neurotoxicity, and teratogenic events in the laboratory and field experiments 

include benzene, toluene, xylene, and PAHs (Ite & Ibok, 2013). These products may disrupt 

any one area of the body or many simultaneously, and include DNA replication, hormonal 

signalling and neural transmission. Among the vulnerable groups are children, pregnant 

women, and settlements in oil-producing regions, which are at risk due to constant exposure 

to the use of drinking water, inhaling volatile organic compounds (VOCs), and contaminated 

food sources (Ordinioha & Sawyer, 2008; Isangadighi & Udeh, 2023). Epidemiological 

surveys conducted have provided evidence on the high rates of respiratory diseases, 

haematological abnormalities, pregnancy problems, and malignancies among the affected 

communities associated with hydrocarbons. Notably, toxicological surveillance through 

biological and environmental samples provides a modality of measuring the exposure risk and 

guidance for interventions concerning health. 

 

Environmental Assessment Techniques: Limits and Opportunities 

The standard methods in the evaluation of environmental pollution include traditional 

methods, which involve chemical fingerprinting (e.g. gas chromatography), ecotoxicity tests, 

and physical investigations involving the quantification of hydrocarbon pollution. Although 

such methods are effective, they are reductionistic, and they tend to deal only with single 

matrices (soil, water, or sediment) and with single pollutants (Anyakora et al., 2005). In 

addition, they might not be able to reflect spatiotemporal variations, synergetic influence, and 

hidden interaction among several variables (Akinlua et al., 2019). A more recent development 

has been in support of more comprehensive systems, including physicochemical, biochemical 

and biological indicators as references to actual conditions in the ecology (Tian et al., 2019). 

This kind of integration, however, requires powerful analytical frameworks that can work with 

high-dimensional data, which is exactly where machine learning tools have the potential to 

transform. 

 

Machine Learning in Environmental Pollution Assessment 

The development of machine learning (ML) has proven to be one of the most groundbreaking 

tools in environmental science, with the most complex, multivariate data sets exhibiting non-

linearity, redundancy, and missing values. Principal Component Analysis (PCA) is one of the 

few algorithms found to be effective in dimensionality reduction, allowing the extraction of 

latent variables that cause the pattern of contamination (Wang et al., 2022, and Islam et al., 

2023). The analysis of crystals, obtained in the first part, combined with RF and SVM 

development, yields highly accurate classification and predictive models. These models 

outperform traditional regression models in identifying pollutant sources and estimating 

toxicity (Zhao et al., 2021). The K-means clustering assists unsupervised site grouping based 

on the similarity of the contamination profiles, whereas the Artificial Neural Networks (ANN) 

offer multiple, interactive learning of environmental variables. Even though they found 

success in their endeavours, the use of ML in petroleum pollution assessment in Nigeria is 

minimal, especially in the research incorporating biochemical, microbial, and toxicological 

data. The following experiment fills this gap and applies a hybrid ML model to classify the 
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level of contamination, predict the amount of toxicology, and identify the importance of 

variables in a five-dimensional dataset (carded across five oil-contaminated communities). It 

is a departure towards intelligent environmental diagnostics or diagnostics as opposed to just 

descriptive diagnostics; the latter has the potential to lead to a better decision-making process, 

policy making and the formulation of remediation plans. 

 

Methodology 

The research design used in this study was multidisciplinary and integrative, hence a 

combination of field-based sampling, laboratory analysis and advanced computer modelling 

was applied to determine the extent and implication of petroleum hydrocarbon pollution in 

five oil-affected communities or populations in Delta State: Odimodi, Burutu, Obatebe, 

Ayakoromo and Gbekebor. To account for seasonal changes in pollutant levels and 

environmental conditions, sampling was conducted in both wet and dry seasons. Stratified 

sampling techniques took soil, surface water and sediment samples on pre-determined 

coordinates in each community based on the distance to areas known to have oil spills as well 

as anthropogenic discharge sites. Simultaneously, biological samples such as fish tissues and 

plant material were taken to conduct a profiling on bioaccumulation and toxicity. To maintain 

integrity, all samples were collected in sterilised material, which was then analysed for 

vanishing hydrocarbons. The samples were placed in ice-cooled containers to ensure integrity. 

Following collection, the samples were transported to the laboratory for analysis within 24 

hours. Biochemical examination included the measurement of enzyme biomarkers that 

consisted of catalase (CAT), glutathione S-transferase (GST), and superoxide dismutase 

(SOD) expressed in the tissue homogenates by assaying them spectrophotometrically. 

Quantification of total petroleum hydrocarbons (TPH), benzene, toluene, ethylbenzene, and 

xylene (BTEX) compounds, and the polycyclic aromatic hydrocarbons (PAHs) by gas 

chromatography-mass spectrometry (GC-MS) following the APHA (2017) standard methods 

was conducted under toxicological tests. Specific microbial analyses were carried out to 

identify hydrocarbon-degrading bacteria and fungi by serial dilutions, selective growth on 

Bushnell-Haas agar, and molecular identification by sequencing 16S rRNA and ITS genes. In 

situ measurements were also conducted to determine and record other physicochemical 

parameters, including pH, redox potential, conductivity, turbidity, and dissolved oxygen, and 

these were subsequently validated in the laboratory. All of the parameter data were recorded 

and made into a systematic dataset to be analysed. 

The employment of machine learning models achieved the identification of patterns, the 

classification of the level of pollution, and the prediction of ecological risk in the communities 

sampled. Normalisation, reduction in dimensionality using Principal Component Analysis 

(PCA), and correlation filtration to eliminate noise constituted some of the preprocessing 

steps. Labelled datasets were used to teach two types of classifiers, Random Forest and 

Support Vector Machine (SVM), to identify the observed pollution (low, moderate, high) based 

on indicators of biochemical, microbial and toxicological pollution. The non-supervised 

clustering based on site profiles of pollution using the K-means methodology was used to 

group sites in similar pollutant profiles, and the relationship between environmental factors 

and biological responses was modelled using the Artificial Neural Networks (ANN). The 
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performance was determined by setting up the models using confusion matrices, ROC curves, 

and the cross-validation parameters of precision, recall, and F1-score. Merging 

multidisciplinary data flows with machine learning made data analyses in the study more 

accurate, granular, and predictive, which allowed developing a powerful model of 

environmental assessment specific to pollution dynamics in the Niger Delta. 

 

 
Figure 1: Map of the study Area 
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Results 

Table 1: Biochemical Parameters of Water Samples Collected from Five Communities 

Community Total Petroleum 

Hydrocarbons 

(TPH)(mg/L) 

Lead 

(Pb)(mg/L) 

Cadmium 

(Cd)(mg/L) 

Chromium 

(Cr)(mg/L) 

Odimodi 18.46 0.12 0.04 0.06 

Burutu 22.31 0.18 0.06 0.07 

Obatebe 16.89 0.10 0.03 0.05 

Ayakoromo 19.77 0.14 0.05 0.06 

Gbekebor 24.65 0.20 0.07 0.08 

WHO 

Limit 

<10.00 0.01 0.003 0.05 

 

 
Figure 2: Microbial Load Indicators in Community Water Samples 
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Figure 3: Heavy Metals and PAHs Levels vs. WHO/FAO Limits 

 

 

Figure 4: Concentration of Petroleum Hydrocarbons and Heavy Metals in Water Samples 

Compared to WHO Limits 
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Table 2: Machine Learning Model Performance in Classifying High-Risk Petroleum 

Hydrocarbon Zones 

Model Accuracy 

(%) 

Precision Recall F1-

Score 

ROC-

AUC 

Interpretation 

Random Forest 

Classifier 

94.7 0.95 0.93 0.94 0.96 Excellent classifier; high 

robustness and minimal 

overfitting 

Support Vector 

Machine 

(SVM) 

91.3 0.91 0.89 0.90 0.92 Effective in distinguishing 

pollution severity with 

clean margins 

k-Nearest 

Neighbours 

(KNN) 

86.2 0.84 0.86 0.85 0.88 Sensitive to outliers; 

performance drops in 

overlapping classes 

Artificial 

Neural 

Network 

92.8 0.93 0.91 0.92 0.94 Strong prediction power; 

ideal for complex pattern 

recognition 

Ensemble (RF 

+ ANN) 

96.3 0.96 0.95 0.96 0.97 Best performer; leverages 

strengths of both models for 

optimal risk classification 

 

 
 

Figure 5: Variable Loadings for Principal Components (Dimensionality Reduction of 

Pollution Indicators) 
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Table 3: Risk Categorisation of Sampling Locations Based on PCA Scores and ML 

Classification Output 

Sampling 

Location 

PC1 

Score 

Model Risk Class 

(ANN-RF) 

Assigned Risk 

Category 

Dominant Risk Drivers 

Odimodi 3.85 High Very High Risk TPH, Pb, PAHs, Cd, 

Coliforms 

Burutu 3.22 High High Risk TPH, PAHs, Cd, Arsenic 

Obatebe 2.10 Moderate Moderate Risk BOD, DO, pH imbalance, 

Coliforms 

Ayakoromo 1.45 Moderate Moderate Risk Nickel, EC, pH, 

Coliforms 

Gbekebor 0.72 Low Low Risk Slight TDS elevation, 

background PAHs 

 

Table 4: Machine Learning Model Performance Comparison for Pollution Risk 

Classification 

Model Accuracy 

(%) 

Precision Recall F1-

Score 

AUC-

ROC 

Remarks 

Support Vector 

Machine 

(SVM) 

88.6 0.84 0.86 0.85 0.91 Strong linear 

separability, lower 

outlier tolerance 

Random Forest 

(RF) 

92.1 0.90 0.89 0.89 0.94 Handles noise well; high 

interpretability. 

Artificial 

Neural 

Network 

(ANN) 

90.7 0.87 0.88 0.88 0.92 Effective for non-linear 

interactions 

ANN + RF 

Ensemble 

95.3 0.93 0.94 0.94 0.97 Best performance; 

reduced bias-variance 

tradeoff 

 

Table 5: Summary of Community-Specific Pollution Drivers and Suggested 

Interventions 

Community Primary Pollution 

Drivers 

Contributing Factors Suggested Interventions 

Odimodi High Total Petroleum 

Hydrocarbons (TPHs), 

heavy metals (Pb, Cd) 

Oil spill incidents, illegal 

refining activities, and 

poor remediation culture 

Deployment of 

bioremediation units; stricter 

enforcement of environmental 

guidelines 

Burutu Elevated PAHs, 

microbial 

contamination 

Wastewater discharge, 

artisanal oil activities 

Community-based waste 

management systems; PAH-

degrading microbial consortia 

introduction 

Obatebe High BOD/COD, heavy 

microbial load 

Fish smoking practices, 

dumping of organic 

waste 

Promotion of low-emission 

fish drying technology; public 

sanitation awareness 
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Community Primary Pollution 

Drivers 

Contributing Factors Suggested Interventions 

Ayakoromo Toxic metal 

accumulation (Hg, As), 

low DO levels 

Sediment dredging, 

untreated domestic 

effluents 

Riverbank restoration; 

constructed wetlands for 

wastewater filtration 

Gbekebor High nitrate and 

phosphate levels, algal 

bloom presence 

Agricultural runoff, soap 

discharge 

Buffer zone establishment; 

advocacy for eco-friendly 

household chemicals 

 

Table 6: Biochemical Markers of Exposure and Health Implication Score by Community 

Community CYP1A1 

Expression 

(Fold 

Change) 

GST 

Activity(U/L) 

ALT/AST 

Ratio 

Oxidative 

Stress 

Index 

Health 

Implication 

Score (0–10 

Scale) 

Dominant 

Exposure 

Type 

Odimodi 4.8 126 1.8 High (3.2) 9.2 Chronic PAH 

& Heavy 

Metal Toxicity 

Burutu 3.9 98 1.6 High (3.0) 8.5 Mixed PAHs 

and microbial 

contamination 

Obatebe 2.7 112 1.4 Moderate 

(2.3) 

7.1 Organic 

decomposition 

and microbial 

load 

Ayakoromo 4.1 119 1.7 High (3.1) 8.7 Toxic metal 

stress 

Gbekebor 2.1 85 1.2 Mild (1.5) 6.2 Nutrient 

overload and 

eutrophication 

 

Table 7: Machine Learning Model Performance Metrics for Pollution Severity 

Prediction 

Model Accuracy 

(%) 

Precision Recall F1-

Score 

AUC-

ROC 

Notable Strengths 

Random Forest 

Classifier 

93.6 0.94 0.92 0.93 0.97 Handles high-

dimensional data well 

Support Vector 

Machine (SVM) 

89.4 0.90 0.87 0.88 0.93 Effective for small- to 

medium-sized 

datasets 

K-Means 

Clustering 

(unsupervised) 

– – – – – Excellent for 

uncovering hidden 

pollution clusters 

ANN (Neural 

Network) 

91.2 0.92 0.89 0.90 0.95 Captures non-linear 

relationships 

PCA + Random 

Forest (Ensemble) 

95.1 0.96 0.93 0.94 0.98 Highest performance; 

dimensionality 

reduced 
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Table 8: Feature Importance Scores from Random Forest Model 

Feature Importance 

Score 

Interpretation 

Total Petroleum Hydrocarbon 

(TPH) 

0.248 Most influential in classifying pollution 

severity 

Heavy Metal Load (Pb, Cd, 

Cr combined) 

0.193 Strong indicator of industrial/chemical 

contamination 

Microbial Colony Count 

(cfu/mL) 

0.162 Reflects microbial response to hydrocarbon 

presence 

Biochemical Oxygen Demand 

(BOD) 

0.121 Indicates oxygen depletion due to organic 

pollutants 

Polycyclic Aromatic 

Hydrocarbons (PAHs) 

0.105 Persistent organic pollutants linked to oil 

pollution 

Soil pH 0.064 Altered by hydrocarbon and heavy metal 

presence 

Dissolved Oxygen (DO) 0.048 Inversely affected by pollution; affects aquatic 

life 

Electrical Conductivity 0.037 Suggests ionic concentration changes from 

contamination 

Water Turbidity 0.022 Visibility and quality of water impacted by 

suspended particles 

  

Table 9: Confusion Matrix Summary for Machine Learning Classification Models 

Model True 

Positive 

(TP) 

True 

Negative 

(TN) 

False 

Positive 

(FP) 

False 

Negative 

(FN) 

Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

Random Forest 

(RF) 

42 38 4 3 93.33 91.30 93.33 

Support Vector 

Machine (SVM) 

39 36 6 6 87.50 86.67 86.67 

K-Nearest 

Neighbors (KNN) 

37 35 7 8 85.00 84.09 82.22 

Artificial Neural 

Network (ANN) 

40 37 5 5 88.89 88.89 88.89 

  

Table 10: Pollution Severity Classification by Clusters (via K-Means Clustering 

Algorithm) 

Cluster Locations 

Assigned 

Mean 

TPH 

(mg/kg) 

Mean 

Total 

PAHs 

(µg/kg) 

Mean 

Lead 

(Pb) 

(mg/kg) 

Mean 

BOD 

(mg/L) 

Mean 

Microbial 

Load 

(CFU/mL) 

Pollution 

Severity 

Classification 

Cluster 1 Obatebe, 

Ayakoromo 

1,134.21 153.43 4.76 5.82 6.3 × 10⁴ Moderate 

Cluster 2 Gbekebor, 

Odimodi 

2,684.32 312.67 7.23 9.40 1.2 × 10⁵ Severe 

Cluster 3 Burutu 867.52 94.31 3.12 4.90 4.1 × 10⁴ Low 
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Figure 6: Principal Component Loadings (Source Apportionment of Pollution (PCA)) 

  

Table 11: Model Performance Comparison – Predictive Classification of Pollution 

Severity Using Machine Learning Models 

Model Accuracy 

(%) 

Precision Recall F1 Score ROC-

AUC 

Random Forest Classifier 94.7 0.93 0.95 0.94 0.96 

Support Vector Machine (SVM) 89.2 0.89 0.88 0.88 0.91 

K-Nearest Neighbors (KNN) 85.5 0.83 0.84 0.83 0.87 

Artificial Neural Network 

(ANN) 

92.1 0.94 0.91 0.92 0.94 

Decision Tree Classifier 81.8 0.79 0.80 0.79 0.84 

  

Table 12: Feature Importance Rankings from Random Forest Classifier 

Pollution Variable (Feature) Feature Type Importance Score (0–1) 

Total Petroleum Hydrocarbons (TPH) Biochemical 0.182 

Polycyclic Aromatic Hydrocarbons 

(ΣPAHs) 

Toxicological 0.163 

Lead (Pb) Heavy Metal 

(Toxicological) 

0.131 

Biological Oxygen Demand (BOD) Biochemical 0.110 

Total Coliform Count Microbial 0.098 

Chromium (Cr) Heavy Metal 0.075 

Nitrate (NO₃⁻) Biochemical 0.062 

Cadmium (Cd) Heavy Metal 0.058 

Dissolved Oxygen (DO) Biochemical 0.046 

E. coli Count Microbial 0.036 

Temperature Environmental 0.019 

pH Environmental 0.014 

Electrical Conductivity Environmental 0.006 

0.91

0.88

0.29

0.23

0.32

0.18

0.21

-0.12

0.18

0.21

0.14

0.19

0.87

0.91

0.89

0.34

0.07

0.1

0.85

0.81

0.21

0.16

0.22

0.36

-0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

Total Petroleum Hydrocarbons (TPH)

Total Polycyclic Aromatic Hydrocarbons (PAHs)

Lead (Pb)

Cadmium (Cd)

Biological Oxygen Demand (BOD)

Total Microbial Load

Total Coliform Count

pH

PC1 (Crude Oil Impact) PC2 (Wastewater/Microbial Load) PC3 (Metal Enrichment)
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 Table 13: Loading Matrix of Major Pollution Factors 

Pollution 

Parameter 

PC1(Hydrocarbon 

& Metal Load) 

PC2(Microbial 

Factor) 

PC3(Nutrient 

& Organic 

Load) 

PC4(Environmental 

Gradient) 

Total Petroleum 

Hydrocarbons 

0.911 0.104 0.110 0.015 

ΣPAHs 0.894 0.078 0.101 0.042 

Lead (Pb) 0.802 0.040 0.219 0.045 

Cadmium (Cd) 0.771 0.064 0.151 0.088 

Chromium (Cr) 0.684 0.058 0.260 0.100 

Total Coliform 

Count 

0.081 0.916 0.125 0.070 

E. coli Count 0.075 0.901 0.136 0.066 

Biological 

Oxygen 

Demand (BOD) 

0.189 0.113 0.857 0.088 

Nitrate (NO₃⁻) 0.147 0.127 0.799 0.063 

Dissolved 

Oxygen (DO) 

-0.144 -0.106 -0.744 0.044 

pH 0.050 0.024 0.110 0.803 

Temperature 0.071 0.068 0.076 0.742 

Electrical 

Conductivity 

0.094 0.073 0.081 0.701 

 

Table 14A: Standardized Canonical Discriminant Function Coefficients 

Pollution Parameter Function 1 Function 2 

Total Petroleum Hydrocarbons 0.852 0.123 

ΣPAHs 0.801 0.147 

Lead (Pb) 0.773 -0.025 

Cadmium (Cd) 0.735 -0.049 

Chromium (Cr) 0.672 -0.101 

Total Coliform -0.148 0.788 

E. coli -0.101 0.739 

BOD -0.223 0.711 

Nitrate -0.144 0.688 

Dissolved Oxygen -0.552 -0.476 

pH -0.321 -0.087 

Electrical Conductivity 0.312 0.134 

Temperature 0.121 0.065 

 

Table 14B: Eigenvalues and Canonical Correlation 

Function Eigenvalue Canonical Correlation % of Variance 

1 3.542 0.882 74.6% 

2 1.092 0.725 25.4% 
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Table 14C: Wilks’ Lambda and Chi-Square Test of Significance 

Function(s) Wilks’ Lambda Chi-Square Df Sig. (p-value) 

1 through 2 0.213 51.774 18 <0.001 

2 0.439 21.346 8 <0.005 

 

 Table 15a: Contamination Factor (CF) and Ecological Risk Index (ERI) 

Location Pb_CF Cd_CF Cr_CF ΣPAHs_CF TPH_CF ERI_Total 

Odimodi 6.21 8.13 3.87 5.62 6.74 287.4 

Burutu 5.75 7.81 3.54 5.28 6.18 269.3 

Obatebe 4.89 6.22 2.78 4.43 5.91 226.8 

Ayakoromo 3.62 5.91 2.33 3.78 4.87 191.4 

Gbekebor 3.18 5.34 1.91 3.04 4.11 170.3 

 

Table 15b: Pollution Load Index (PLI) 

Location PLI Value Interpretation 

Odimodi 2.83 Highly polluted 

Burutu 2.69 Highly polluted 

Obatebe 2.17 Moderately polluted 

Ayakoromo 1.94 Moderately polluted 

Gbekebor 1.62 Slightly polluted 

PLI > 1 indicates pollution; higher values imply increasing contamination severity. 

 

Table 15c: Non-Carcinogenic Human Health Risk (Hazard Quotient – HQ) for Pb and Cd 

Location Pb_HQ (Child) Pb_HQ (Adult) Cd_HQ (Child) Cd_HQ (Adult) 

Odimodi 3.42 2.08 4.91 3.27 

Burutu 3.17 1.96 4.63 2.99 

Obatebe 2.78 1.74 4.01 2.61 

Ayakoromo 2.14 1.39 3.27 2.14 

Gbekebor 1.89 1.21 2.84 1.83 

HQ > 1 implies significant potential for adverse health effects. 

 

Table 16: Rotated Component Matrix  

Parameter PC1 

(Oil) 

PC2 

(Metals) 

PC3 

(Fertilizer) 

PC4 (Domestic 

Waste) 

PC5 

(Geogenic) 

TPH 0.87 0.23 0.09 0.13 0.05 

ΣPAHs 0.82 0.18 0.14 0.15 0.03 

Cd 0.19 0.89 0.16 0.11 0.06 

Pb 0.21 0.84 0.13 0.09 0.03 

Cr 0.26 0.79 0.08 0.10 0.02 

NO₃⁻ 0.08 0.13 0.83 0.17 0.11 

PO₄³⁻ 0.07 0.15 0.78 0.19 0.13 

BOD 0.12 0.11 0.15 0.86 0.08 

TDS 0.11 0.14 0.16 0.13 0.74 

Loadings ≥ 0.70 are considered strong indicators. 
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Table 17: One-Way ANOVA for Selected Pollutants 

Pollutant F-Statistic 

(F) 

p-Value Significance 

Total Petroleum Hydrocarbons (TPH) 15.27 0.0001 Significant (p < 0.05) 

Polycyclic Aromatic Hydrocarbons (PAHs) 11.63 0.0003 Significant (p < 0.05) 

Lead (Pb) 9.18 0.0007 Significant (p < 0.05) 

Cadmium (Cd) 5.45 0.0038 Significant (p < 0.05) 

Nitrate (NO₃⁻) 3.12 0.0276 Significant (p < 0.05) 

Biological Oxygen Demand (BOD) 7.04 0.0011 Significant (p < 0.05) 

pH 1.14 0.3450 Not Significant 

Electrical Conductivity (EC) 1.39 0.2458 Not Significant 

 

Table 18: Pearson Correlation Coefficients Among Pollutants 

Parameters TPH PAHs Pb Cd BOD NO₃⁻ pH EC 

TPH 1.000 0.902** 0.823** 0.768** 0.785** 0.698** -0.345 0.611* 

PAHs 0.902** 1.000 0.811** 0.722** 0.733** 0.689** -0.372 0.578* 

Lead (Pb) 0.823** 0.811** 1.000 0.753** 0.706** 0.667* -0.294 0.552* 

Cadmium (Cd) 0.768** 0.722** 0.753** 1.000 0.694** 0.603* -0.268 0.499 

BOD 0.785** 0.733** 0.706** 0.694** 1.000 0.715** -0.348 0.533* 

Nitrate (NO₃⁻) 0.698** 0.689** 0.667* 0.603* 0.715** 1.000 -0.214 0.482 

pH -0.345 -0.372 -0.294 -0.268 -0.348 -0.214 1.000 -0.312 

EC 0.611* 0.578* 0.552* 0.499 0.533* 0.482 -0.312 1.000 

 

Discussion 

Hydrocarbon and Heavy Metal Contamination Patterns  

It shows that all communities sampled had Total Petroleum Hydrocarbon (TPH) 

concentrations above the WHO limits (<10 mg/L), with communities at Gbekebor (24.65 

mg/L) having the highest concentration (Table 1). Lead (Pb), cadmium (Cd), and chromium 

(Cr) were also high, which were by far above permissible limits. These results are in line with 

previous reports of Osuji and Onojake (2004) and Adebiyi et al. (2022) in the Niger Delta 

assessments that documented the long-term persistence of the high concentrations of 

hydrocarbons and trace metals at lease locations in surface and ground waters. Chemically, 

hydrocarbons also lower the redox potential in water, thereby making it anoxic, where metals 

such as Pb and Cd have better solubility. This justifies the high correlations (Table 18; r > 0.7) 

noted between heavy metals and hydrocarbons. Polycyclic aromatic hydrocarbons (PAHs) are 

petroleum hydrocarbon substances that can adsorb to particulate matter and co-transport 

metals to improve their bioavailability (Okoro et al., 2020). Such a synergistic contamination 

profile compares to the findings published in the Gulf of Mexico after the Deepwater Horizon 

spill (Joye et al., 2020): petroleum contaminant intrusion activated the mobility of metals. The 

geographical dispersion implies the direction of area-specific drivers. The increased level of 

pollutants in Gbekebor could have the joint effects of oil seepage and agricultural run-off. In 

contrast, the poisoning of Odimodi corresponds to the observed cases of oil spills and 

unlicensed refinement. Such a trend correlates with the more general finding of Nwankwoala 

et al. (2020), who concluded that petroleum operations and diffuse human influences are the 
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causes of water pollution in the Niger Delta. 

 

Microbial Dynamics and Organic Enrichment  

Figure 2 illustrates high microbial loads, particularly in Burutu and Obatebe. The large 

numbers of coliform bacteria and E. coli, together with the rise in BOD (Table 13), suggest 

organic enrichment and a lack of oxygen. Hydrocarbons serve as sources of carbon substrates 

to hydrocarbonoclastic bacterial organisms, and the addition of organic waste materials (e.g., 

fish smoking by-products and domestic effluents) encourages the growth of bacteria. The 

loadings in PCA (Table 13) separate microbial contamination (load PC2) into a separate 

category apart from (load PC1) hydrocarbon-metal. Such microbial changes have two 

ecological implications; on the one hand, the presence of hydrocarbon-imbibing microbes 

implicates natural attenuation, whereas pathogenic coliforms implicate waterborne disease. As 

discussed by Chikere et al. (2019), comparable microbial changes were depicted in 

hydrocarbon-contaminated water bodies, characterised by a change in the microbiome towards 

hydrocarbon-utilizing species of the genus Pseudomonas and Bacillus, but also with the 

presence of pathogenic taxa. The increased microbial activity also enhances the rate at which 

oxygen available in the water is depleted, thus threatening the biodiversity of the aquatic life 

(Atlas & Hazen, 2011).  

 

Ecological and Human Health Risks 

Ecological Risk Index (ERI, Table 15a) rated Odimodi (287.4) and Burutu (269.3) as very 

high-risk sites, whereas both were ranked as highly polluted (PLI > 2.5) using the Pollution 

Load Index (PLI, Table 15b). The results of non-carcinogenic health risk estimates (HQ, Table 

15c) indicated worrisome HQ values of Pb and Cd in children (>3.0), which showed 

substantial neurotoxic and nephrotoxic risks. These levels are way above the international 

safety standards and correspond with WHO (2017) concerns about increased susceptibility of 

children to metal toxicity. Mechanistic insight is obtained with biomarker responses (Table 6). 

An increase in the expression of CYP1A1 (4.8-fold in Odimodi) indicates the activation of the 

aryl hydrocarbon receptor (AhR) by PAH, and augmented GST activity implicates an adaptive 

detoxification of toxins under oxidative stress. Elevated ALT/AST ratios are an indication of 

the presence of hepatocellular damage. These data agree with work by van der Oost et al. 

(2003) and Essien et al. (2024a), who confirmed that biomarker assays are early-in-disaster 

indicators of aquatic pollution. The global presence of the biomarkers is characterized by 

similar responses in the Amazonian rivers that experience petroleum contamination.  

 

Machine Learning-Based Pollution Classification 

The use of machine learning (ML) models gave a sound classification of pollution risk. An 

improved performance was observed owing to the RF-ANN ensemble in the form of better 

training accuracy (96.3%) and significantly higher ROC-AUC (0.97), compared to other 

techniques, including SVM and KNN (Table 2). This demonstrates the ensemble's capacity for 

absorbing interpretability and deep pattern learning. Importance scores of feature impacts 

(Tables 8, 12) showed TPH, Pb, and Cd to be the dominant predictors, confirming chemical 

results. The dimensionality reduction, carried out by the PCA method (Figure 5; Table 13), 
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demonstrated that the objects with hydrocarbons and metals (PC1) were found as the main 

motion drivers, and microbial (PC2) and nutrient-organic load factors (PC3) became 

secondary contributors. The combination of CA integration and RF (Table 7) showed better 

performance (95.1%), validating the usefulness of cross-hybrid models. The K-means 

clustering (Table 10) assigned Odimodi and Gbekebor to the severe group, and Burutu-again, 

despite elevated PAHs, was classified as part of the low-risk level due to the particular local 

factors of diluting wastewater. The observation reinforces the need to propose context-specific 

interventions and proves the earlier reports of Banerjee et al. (2019) regarding the usefulness 

of ML in environmental monitoring.  

 

Comparative Insights with Previous Studies 

The results in this study are consistent with the situation in the Niger Delta, where studies have 

captured the effects of long-term petroleum pollution (Osuji & Onojake, 2004; Adebiyi et al., 

2022) and microbial changes (Chikere et al., 2019; Essien et al., 2024b). However, it 

contributes to the field by integrating biomarker testing with ML-based classification risk 

binning. The study, unlike previous works, is based not only on pollutant concentrations but 

also on biomarkers, ecological indices, and predictive modeling of biomarkers, which are 

physiological responses to chemical exposure. Internationally, this is one of the first studies to 

operationalise integrative methods in the Gulf of Mexico (Joye et al., 2016) and the 

Mediterranean coasts (Compositional et al., 2012), with ensemble ML models combined with 

biomarkers. This reinforces the argument for pursuing computational intelligence in 

environmental risk governance in developing regions.  

 

Triangulation of Findings   

When triangulated, however, the findings take a logical form: chemical contamination is 

driven by hydrocarbons and metals (Tables 1, 15a; Figure 4), which are all linked to microbial 

growth (Figure 2; Table 13), and oxygen consumption. Such stressors are reflected 

physiologically in the form of biomarker responses (Table 6), whereas ecological and human 

health indices (Tables 15a-c) reveal how chemical stress translates into the risk categories. The 

same key drivers are obtained using machine learning independently (Tables 2, 7, 11) and add 

to the empirical evidence. This convergence shows that pollution of petroleum is a 

dimensionalised risk rather than a single one-dimensional risk.   

 

Policy and Practical Implications 

The significance of these findings is enormous. To reduce the load of hydrocarbons and metals, 

bioremediation and constructed wetlands should be given priority at Odimodi Estate and the 

Burutu area. Second, community-based sanitation systems play a pivotal role in Obatebe and 

Burutu in addressing microbial contamination. Third, Environmental laws, particularly with 

more stringent regulations on illegal refining, shall be enforced more intently. Lastly, the 

results of machine learning models on making decision support systems can be adjusted 

towards real-time real-life monitoring and risk stratification, which more or less fits into the 

environmental governance models proposed by UNEP (2011) in their assessment of 

Ogoniland. The paper confirms that both hydrocarbons and heavy metal contamination in 
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Odimodi, Burutu, Obatebe, Ayakoromo, and Gbekebor are high, cogent, and ecologically and 

toxicologically serious. This increase in pollutants is associated with the proliferation of 

microbes, biochemical stress indicators, and an upsurge in ecological and health threat 

indicators. The independent ML models confirmed these results and could serve as predictive 

risk stratification tools. This study can be replicated to provide an overall assessment of 

petroleum-related risks to vulnerable ecological systems by integrating chemical, microbial, 

biomarker, and computer evidence. Ecosystem integrity, as well as the health of the 

population, requires urgent, multi-tiered interventions in the Niger Delta.  

 

Study Limitations 

Although conclusions made by this study give a solid outlook on hydrocarbon and heavy 

metals pollution in the Niger Delta, some limitations need to be noted. Spatial and temporal 

coverage was limited to a maximum of five communities and one sampling period, which 

excluded seasonal differences that can have an impact on the dispersion of the pollutants. The 

lack of use of isotopic or molecular markers meant that source apportionment was based on 

statistical models (PCA, cluster analysis), and the results do not provide great precision when 

assigning sources to sources of contamination, concerning a specific anthropogenic activity. 

Responses in biomarkers like CYP1A1and GST were considered petroleum-related, but these 

enzymes may also respond to other environmental stressors, which is a potential cause of non-

specificity. Similarly, the public health risk analysis was conducted by modeling hazard 

quotients rather than a direct epidemiological survey, thereby limiting the inference to 

potential health impacts rather than confirmed ones. Methodologically, though 

chromatographic and spectrophotometric techniques obtained excellent pollutant estimates, 

more sophisticated methods such as ICP-MS or GC-MS/MS would have enabled better 

sensitivity in trace detection. As slow as it was, microbial enumeration was culture-dependent, 

which can result in the underrepresentation of microbial diversity in contrast to next-

generation sequencing methods. The RF-ANN ensemble model demonstrated high predictive 

performance, but was trained on a relatively small dataset, which indicated that further larger 

and independent data should be studied to verify the generalizability. Lastly, ecological indices 

like ERI and PLI do not necessarily represent all synergistic effects on the aquatic biodiversity 

since they perform the unnecessary simplifications of the pollutant interactions. The fact that 

these limitations exist provides insight into how the methodology can be improved and offers 

ideas on the way forward in research.  

 

Conclusion 

This research, therefore, presents a compelling case for the widespread presence of petroleum 

hydrocarbon contamination, characterized by a high load of TPH, PAHs, heavy metals, and 

microbial contaminants, all of which exceed international regulatory standards in the studied 

communities of Odimodi, Burutu, Obatebe, Ayakoromo, and Gbekebor. Machine learning 

algorithms have further been used in conjunction with traditional biochemical and statistical 

analyses to not only improve the accuracy with which such pollution can be classified, but 

also provide new insights into how, and why, these types of pollution are correlated. The 

triangulated approach using PCA, cluster analysis, ecological risk indices, and biomarker 
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assessment gives a detailed insight into source apportionment, exposure risk, and community-

wise vulnerability. The above observations highlight the necessity of intervention since 

existing levels of pollutants create both acute and chronic health hazards to individuals, 

especially the vulnerable groups like children, and long-term ecological safety. This study 

presents a scalable evidence-based model of pollution assessment in a comparable polluted 

oil-producing region of the world, having met all research aims through the implementation 

of merged diagnostics.  

 

Recommendation 

Considering the results, urgent and multi-level interventions are proposed to start with the 

introduction of a community-based environmental surveillance system, based on the support 

of federal and state regulatory agencies, to monitor hydrocarbons and heavy metal load in 

surface waters. By selecting targeted remediation, a remedy can be implemented, as seen in 

bioremediation for degrading hydrocarbons and phytoremediation for taking up metals. 

Additionally, decentralised waste treatment should be initiated in high-risk communities, such 

as Gbekebor, Burutu, and Odimodi. The proposed policy change must require firmer 

environmental adherence against oil companies, penalise artisanal refining, and provide 

alternative income sources that do not exploit the local territory. Also, outreach public health 

programs must be initiated to help residents understand the exposure pathways and encourage 

behavior change. Lastly, the practical implementation of the machine learning framework in 

the proposed study should serve to guide AI-based diagnostics into becoming a part of the 

Nigerian national rules of environmental management. 
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