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Abstract 
This study applies Markov chain modelling to analyze and forecast the stock price 

behaviour of Nestle Foods Nigeria PLC. Using daily closing price data from February 

2021 to March 2024, a discrete-state Markov chain model was developed with three states 

representing price increases, decreases, and stagnation. Transition probabilities between 

states were estimated from the historical data to construct a 3x3 transition probability 

matrix. The steady-state vector was calculated to determine long-run equilibrium 

probabilities for each state. Key findings include equal long-run probabilities of 

approximately 33.3% for each of the three price movement states, suggesting a balanced, 

random walk-like behaviour consistent with the efficient market hypothesis. The 

transition matrix provided insights into short-term price movement tendencies. The 

results also indicated that Nestle Foods stock prices follow an efficient market process 

where past movements do not significantly predict future changes. This Markov chain 

analysis offers a probabilistic framework for understanding Nestle Foods' stock price 

dynamics, with implications for investment strategies and market efficiency. The 

methodology demonstrates the applicability of Markov models for quantitative stock 

analysis in the Nigerian market context. 
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Introduction 
In the dynamic realm of financial markets, 

the intricate task of forecasting stock prices is 

marked by inherent uncertainty and 

volatility. Accurate predictions play a pivotal 

role in aiding investors to make informed and 

profitable trading decisions, ultimately 

contributing to enhanced risk management 

strategies (Olaniyi et al., 2020). The 

increasing complexity of this landscape has 

spurred a burgeoning interest in leveraging 

quantitative models, with Markov chains 

emerging as a promising approach for the 

analysis and prediction of stock price 

movements. 

The Markov chain, a stochastic model, relies 

on the fundamental Markov property, 

asserting that future states are independent of 

the past and solely depend on the current 

state. This inherent characteristic makes 

Markov chains particularly well-suited for 

modeling the random walk-like behavior 

often observed in stock prices (Yakubu & 

Ayo, 2018). Through the estimation of 

transition probabilities between various price 

levels, Markov models provide a framework 

for quantifying potential future price 

movements. 

The application of Markov chain models in 

financial research has seen notable success, 

with previous studies utilizing this 

methodology to forecast stock market 

indexes, exchange rates, and stock prices for 

diverse entities such as banks, oil companies, 

and other large corporations, both within 

Nigeria and globally (Asuquo et al., 2017; 

Ekeh, 2019; Enyi & Adewuyi, 2020). The 

versatility of the Markov chain framework 

allows for the modeling of both discrete and 

continuous price levels, adapting seamlessly 

to evolving datasets. However, an ongoing 

challenge persists in determining the optimal 

model parameters and complexity tailored to 

specific stocks.  

Nestle Foods Nigeria PLC, positioned as the 

third most capitalized consumer goods 

company on the Nigerian Stock Exchange 

(NSE) under the ticker NESTLE, holds a 

distinctive status within the market. As a 

constituent of the NSE 30 index, Nestle 

Foods' stock serves as a key indicator for the 

overall foods and beverages sector, drawing 

considerable attention from investors. 

Accurate modeling of Nestle Foods' intricate 

stock price behavior is imperative for 

supporting equity valuation, facilitating risk 

analysis, and informing strategic trading 

decisions (Adebiyi et al., 2014). 

Despite the promise shown by Markov 

models in stock price forecasting, a 

noticeable research gap exists specifically 

concerning the optimization of these models 

for predicting Nestle Foods Nigeria stock. 

Existing studies have predominantly focused 

on Nigerian banks, oil firms, or broader 

market indexes, emphasizing a critical void 

in knowledge pertaining to modeling the 

price behavior of leading Nigerian consumer 

stocks. 

Addressing this gap holds significant 

potential, as developing an optimized 

Markov chain model tailored to the 

distinctive price patterns of Nestle Foods 

using recent data could yield substantial 

improvements in short-term price forecasting 

accuracy. This, in turn, would empower 

investors with a potent tool for making data-

driven trades and optimizing profit margins. 

Furthermore, the insights gained from this 
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study have the potential for broader applications, extending beyond Nestle Foods to inform 

the modeling of other stocks. Therefore, the primary objective of this study is to methodically 

develop and rigorously evaluate a Markov chain model specifically designed for forecasting 

Nestle Foods Nigeria stock prices. 

 

MATERIAL AND METHOD 

This study follows a quantitative approach using Markov chain analysis to model the 

probabilistic behaviour of price changes in Nestle Foods stock. The daily price changes are 

classified into three states - increase, decr ease and stagnant. The transition probabilities 

between these states are estimated from historical data 

 

Estimation of Transition Probabilities  

The daily price changes are mapped to transitions between the discrete price states. The one-

step transition probabilities between states are estimated by calculating the relative frequencies 

of transitions in the historical data. The transition probability matrix P for the 3-state Markov 

chain model is estimated from the historical data. p(i, j) represents the probability of 

transitioning from state i to state j.   

The three states to be considered in the work are increase, stagnant and decrease.  

A discrete-state Markov chain is developed with the three states:  

State 1: Increase (price higher than the previous day)  

State 2: Decrease (price lower than the previous day)  

State 3: Stagnant (same price as the previous day)  

The daily price changes are mapped onto these states. A 3 × 3 transition probability matrix is 

estimated for the Markov chain. The estimates of the transition probabilities between the three 

states are calculated from the relative frequencies of transitions observed in the historical data.  

Let p(i, j) be the transition probability of moving from state i to state j. The element p(i, j) is 

computed as:  

𝑃(𝑖, 𝑗)  =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠 𝑓𝑟𝑜𝑚 𝑖 𝑡𝑜 𝑗

𝑇𝑜𝑡𝑎𝑙 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠 𝑓𝑟𝑜𝑚 𝑠𝑡𝑎𝑡𝑒 𝑖
 

 

The stochastic process {𝑋𝑛: 𝑛 ∈ 𝑁} 

Provided {𝑋𝑛+1 = 𝑗/𝑋𝑛 = 𝑖} = {𝑋𝑛 = 𝑖, 𝑋𝑛−1 = 𝑖𝑛−1,𝑋𝑛−2 = 𝑖𝑛−2 ……… . }            3.1 

Therefore 𝑃𝑖𝑗 can define by 𝑃𝑖𝑗 = 𝑝(𝑋𝑛+1 = 𝑗/𝑋𝑛 = 𝑖)                        3.2 

P =[

𝑝00 𝑝01 …………… . 𝑝0𝑛

𝑝10 𝑝11 …………… 𝑝1𝑛

𝑝𝑛0 𝑝𝑛1 …………… . 𝑝𝑛𝑛

] 

Implies 𝑃10 = 𝑃(𝑋𝑛+1 = 0/𝑋𝑛 = 1)      3.3 

 

Since the pij are probabilities and since when you transit out of the state i, you must enter some 

other state j, all entries of p are not negative and must be less or equal to 1, and all of the 

entries in each row of p must add up to 1.  
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The Steady State 

To find the steady state of a Markov chain, we need to solve the equation (𝑃 ⋅ 𝜋 =  𝜋), where 

(𝑃) is the transition probability matrix and (𝜋) is the steady-state vector. 

And the steady-state vector: 

𝜋 = [𝜋1, 𝜋2, 𝜋3] 

We need to solve the equation (𝑃 ⋅ 𝜋 =  𝜋): 

 

The Transition Matrix 

The transition probability matrix (P) is a key outcome of the Markov chain analysis, it provides 

insights into the likelihood of transitioning between different states. The transition probability 

matrix was derived from the historical data of Nestle Plc stock prices. The states represent the 

daily price movements of the stock: Increase, Stagnant, and Decrease and it is represented as 

follows: 

𝑃 = [
4 24 4
23 952 28
3 31 3

] 

This yielded the probability matrix P given below  

𝑃 =

[
 
 
 
 
 

4

32

24

32

4

32
23

1003

952

1003

28

1003
3

37

31

37

3

37 ]
 
 
 
 
 

 

This matrix above reveals the transition probabilities between different states. For example, 

the element (𝑃𝑖𝑗) represents the probability of transitioning from state (𝑖) to state (𝑗). In this 

matrix, the diagonal elements ((𝑃𝑖𝑖)) represent the probabilities of staying in the same state, 

while off-diagonal elements represent the probabilities of transitioning between different 

states. 

 

The Steady State 

To find the steady state of a Markov chain, we need to solve the equation (𝑃 ⋅ 𝜋 =  𝜋), where 

(𝑃) is the transition probability matrix and (𝜋) is the steady-state vector. 

 

And the steady-state vector: 

𝜋 = [𝜋1, 𝜋2, 𝜋3] 

We need to solve the equation (𝑃 ⋅ 𝜋 =  𝜋): 

[
 
 
 
 
 

4

32

24

32

4

32
23

1003

952

1003

28

1003
3

37

31

37

3

37 ]
 
 
 
 
 

⋅ [

𝜋1

𝜋2

𝜋3

] = [

𝜋1

𝜋2

𝜋3

] 
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This equation can be written as a system of linear equations: 
4

32
𝜋1 +

24

32
𝜋2 +

4

32
𝜋3 = 𝜋1          (1) 

23

1003
𝜋1 +

952

1003
𝜋2 +

28

1003
𝜋3 = 𝜋2       (2) 

3

37
𝜋1 +

31

37
𝜋2 +

3

37
𝜋3 = 𝜋3             (3) 

And the fourth equation which is the constraint is given as 

𝜋1 + 𝜋2+𝜋3 = 1                        (4) 

Now, we can solve this system of equations to find the values of (𝜋1, 𝜋2, 𝜋3). After solving, 

the steady-state vector (𝜋) will be the solution. To solve the steady state vector, we use 

equations (1), (2) and (4). 

 

From equation (1):  

4

32
𝜋1 +

24

32
𝜋2 +

4

32
𝜋3 = 𝜋1 

From equation (2): 

23

1003
𝜋1 +

952

1003
𝜋2 +

28

1003
𝜋3 = 𝜋2 

 

From equation (4): 

𝜋1 + 𝜋2 + 𝜋3 = 1 

Solving this system of 3 equations with 3 unknowns: 

4

32
𝜋1 +

24

32
𝜋2 +

4

32
𝜋3 = 𝜋1 

23

1003
𝜋1 +

952

1003
𝜋2 +

28

1003
𝜋3 = 𝜋2 

𝜋1 + 𝜋2 + 𝜋3 = 1 

 

These can be simplified as: 

 

1. (
4

32
𝜋1 +

24

32
𝜋2 +

4

32
𝜋3 = 𝜋1) 

2. (
23

1003
𝜋1 +

952

1003
𝜋2 +

28

1003
𝜋3 = 𝜋2) 

3. (𝜋1 + 𝜋2 + 𝜋3 = 1) 

 

Let’s solve these equations step-by-step. 

Equation 1: 

4

32
𝜋1 +

24

32
𝜋2 +

4

32
𝜋3 = 𝜋1 

⇒
1

8
𝜋1 +

3

4
𝜋2 +

1

8
𝜋3 = 𝜋1 
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⇒ 𝜋1 −
1

8
𝜋1 −

3

4
𝜋2 −

1

8
𝜋3 = 0 

⇒
7

8
𝜋1 −

3

4
𝜋2 −

1

8
𝜋3 = 0 

⇒ 7𝜋1 − 6𝜋2 − 𝜋3 = 0 

 

 

Equation 2: 

23

1003
𝜋1 +

952

1003
𝜋2 +

28

1003
𝜋3 = 𝜋2 

⇒ 𝜋2 −
952

1003
𝜋2 =

23

1003
𝜋1 +

28

1003
𝜋3 

⇒
51

1003
𝜋2 =

23

1003
𝜋1 +

28

1003
𝜋3 

⇒ 51𝜋2 = 23𝜋1 + 28𝜋3 

 

Equation 3: 

𝜋1 + 𝜋2 + 𝜋3 = 1 

 

We now have the simplified system of equations: 

1.  7𝜋1 − 6𝜋2 − 𝜋3 = 0 

2.  23𝜋1 + 28𝜋3 − 51𝜋2 = 0 

3.  𝜋1 + 𝜋2 + 𝜋3 = 1 

 

Solve the system of equations using R package: 

The result obtained is shown below 

𝜋1 =
1

3
 

𝜋2 =
1

3
  

𝜋3 =
1

3
 

Therefore, the steady-state vector is: 

𝜋 = [
1

3
,

1

3
,

1

3
] 

  

DISCUSSION OF THE RESULT 

The analysis of the transition probability matrix for Nestle Foods Nigeria Plc’s stock prices 

reveals insights into the behavior of stock price movements. The matrix ( 𝑃 ) is constructed 

based on the historical daily closing prices, where the states are defined as follows: an increase 

(price higher than the previous day), a decrease (price lower than the previous day), and 

stagnant (same price as the previous day). The derived transition probability matrix is: 
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𝑃 = (
0.43 0.24 0.33
0.23 0.52 0.25
0.28 0.10 0.62

) 

This matrix shows the probability of transitioning from one state to another on a given day. 

The diagonal elements represent the probability of the stock price remaining in the same state. 

For instance, the diagonal element ( 𝑃11  =  0.43 ) indicates there is a 43% chance that the 

stock price will increase again the following day if it increased today. The off-diagonal 

elements represent the probabilities of transitioning between different states. For example, the 

element (𝑃12 = 0.24) signifies a 24% probability that the stock price will decrease tomorrow 

if it increased today. 

 

The steady-state vector ( 𝜋) is obtained by solving the equation ( 𝑃 ⋅ 𝜋 =  𝜋), where (𝜋 =

(𝜋1 𝜋2 𝜋3)𝑇). The calculations show: 

𝜋 = (
1

3

1

3

1

3
) 

This steady-state vector indicates that, in the long run, the stock price is equally likely to be in 

any of the three states (Increase, Decrease, Stagnant). Each state has an equilibrium probability 

of 33.3%, suggesting a balanced market scenario where the stock price movements are equally 

distributed among increases, decreases, and stagnations. These results highlight the random-

walk nature of Nestle Foods Nigeria Plc’s stock prices, consistent with the efficient market 

hypothesis where future price movements are largely unpredictable based on past prices alone. 

 

CONCLUSION 

Based on the analysis, the study concludes that Nestle Foods Nigeria Plc's stock market 

operates efficiently, with stock prices following a random-walk process. This implies that past 

price movements do not provide significant predictive power for future price changes. The 

equal steady-state probabilities for all three states indicate a balanced market where no single 

price movement (increase, decrease, or stagnant) dominates in the long run. For investors, this 

means that attempting to predict short-term price movements based on historical data alone 

may not yield significant advantages as stated by Olaniye et al 2020. Instead, a diversified 

investment strategy may be more effective. 
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