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Abstract

Adversarial machine learning (AML) presents a critical threat to the integrity of
machine learning (ML) systems deployed in cybersecurity, where adversarial
examples can maintain malicious functionality while evading detection. This
literature review synthesizes findings from 35 peer-reviewed sources to
investigate the taxonomy, attack strategies, and defense mechanisms associated
with AML in cybersecurity domains such as intrusion detection systems (IDS),
malware analysis, industrial control systems (ICS), and reinforcement learning in
cyber-physical systems. We categorize attacks based on knowledge level, timing,
and specificity, and highlight the unique challenges of functionality-preserving
adversarial inputs in discrete, protocol-constrained environments. The review
further evaluates defensive techniques—including adversarial training, detection
frameworks, model hardening, and secure lifecycle integration—and identifies
key limitations such as domain-specific overfitting, poor generalizability, and lack
of standardized benchmarks. We conclude by advocating for robust, adaptive
defenses, attacker-aware datasets, and security-by-design approaches that embed
adversarial resilience into the entire ML development lifecycle.

Keywords: Adversarial Machine Learning, Cybersecurity, Evasion Attacks,
Intrusion Detection Systems, Malware Detection, Industrial Control Systems,
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Secure Machine Learning Lifecycle.

Model Robustness, Adversarial Training, Functionality-Preserving Attacks,

Introduction
The growing reliance on machine
learning (ML) for  cybersecurity

applications—ranging from intrusion
detection systems (IDS) to malware
classification and biometric
authentication—has revolutionized threat
detection and system resilience (Okoli et
al., 2024). These models can learn
patterns in large datasets (Kalonde et al.,
2024), automate responses to known and
the

overhead of manual rule-based detection

unknown threats, and reduce
mechanisms (Xu et al., 2025). However,
the very strength of these systems—their
ability to generalize from data—has
become a critical vulnerability. This
weakness has given rise to adversarial
(AML),  which

leverages deliberately crafted inputs,

machine  learning
known as adversarial examples, to fool
ML models into making
predictions (Xi, 2020).

Adversarial attacks pose a particularly

incorrect

severe threat in the cybersecurity domain.
Unlike attacks in image classification—
where altered images may fool a
classifier but have minimal real-world
implications—adversarial  attacks in
cybersecurity often aim to preserve
malicious functionality while evading
detection (Rosenberg et al., 2021). For

example, a slightly modified piece of

malware must still be executable and
dangerous even after the perturbation,
which adds complexity to the attack

2021).
Furthermore, attackers in cybersecurity

scenario (Rosenberg et al.,

have clear incentives and often real-time
feedback threat
landscape more dynamic and dangerous

loops, making the
than in other ML application domains
(Xi, 2020).

Recent real-world demonstrations further
underscore the threat. In the case of
Cylance antivirus software, adversarial
perturbations to benign files allowed
them to bypass malware detection by
altering only non-functional bytecode

sections (Rosenberg et al., 2021;
Demetrio et al., 2021). Similarly,
adversarial network traffic has been

crafted to evade even deep learning-based
IDS systems, such as those trained on
NSL-KDD and CICIDS2017 datasets
(Xu et al., 2025; Saini et al., 2024).

There are also significant domain-
specific challenges that differentiate
cybersecurity-focused AML

from other domains. Many cybersecurity

research

features—Ilike API calls, packet headers,
and opcode sequences—are discrete and
semantically critical, making it difficult

to apply
techniques like gradient perturbations

common image-domain
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without breaking functionality (Ahsan et al.,, 2022; Rosenberg et al., 2021).
Additionally, adversarial examples in cybersecurity must comply with protocol
constraints, system policies, and functionality preservation, all while remaining
undetected by both human analysts and automated systems (L1, 2024; McCarthy et al.,
2022).

Despite growing attention, several challenges persist. Defense mechanisms such as
adversarial training, input preprocessing, and anomaly detection often fail to
generalize across domains, remain expensive to deploy in real-time systems, or can be
bypassed by adaptive adversaries (Alobaid et al., 2025; Xu et al., 2025). Moreover,
the lack of standardized benchmarks and publicly available functionality-preserving
adversarial datasets hinders consistent evaluation of proposed defenses (Ibitoye et al.,
2019).

This paper addresses these gaps through a structured literature review focused on the
following objectives:

1. To categorize adversarial attacks in cybersecurity using a unified taxonomy
based on threat model, knowledge type, and attack strategy.

2. To examine domain-specific impacts of AML across malware detection,
biometric authentication, network traffic analysis, and cyber-physical systems.

3. To synthesize the strengths and limitations of existing defense strategies
including adversarial training, detection filters, and secure development
integration.

4. To identify open challenges and propose directions for future work, including
real-world benchmarks, cross-domain defense strategies, and lifecycle-based
robustness evaluation.

In doing so, we aim to provide researchers and practitioners with a comprehensive
foundation for developing secure, robust, and future-proof ML models in
cybersecurity.

Methodology

This literature review followed a structured and systematic approach to ensure
comprehensive coverage of adversarial machine learning (AML) research within the
cybersecurity domain. Multiple academic databases were searched, including IEEE
Xplore, ACM Digital Library, Elsevier ScienceDirect, SpringerLink, arXiv, and
MDPI. These platforms were chosen for their relevance to computer science,
information security, and machine learning research.

The search strategy involved specific keywords designed to capture a wide range of
studies related to adversarial attacks and defenses in cybersecurity. The primary search
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terms included: “Adversarial Machine Learning,” “Adversarial Attacks in
Cybersecurity,” “Evasion Attacks ML IDS,” “Adversarial Malware Detection,” and
“AML defenses cybersecurity.” These terms were selected to encompass both
theoretical foundations and practical implementations of AML in cybersecurity
contexts.

To maintain the quality and relevance of the review, strict inclusion criteria were
applied. Only peer-reviewed articles published between 2018 and 2024 were
considered. The review prioritized scholarly work that addressed AML applications in
cybersecurity, including but not limited to survey papers, case studies, experimental
evaluations, and conceptual frameworks.

After removing duplicates and screening abstracts for relevance, a final corpus of 35
papers was selected. These included several high-impact publications such as articles
from ACM Computing Surveys, IEEE Transactions on Information Forensics and
Security, and other reputable journals. Each paper was reviewed in full and analyzed
for its contribution to understanding adversarial threats, defense strategies, system
vulnerabilities, or evaluation frameworks.

The selected articles were thematically categorized under four primary areas: (1)
taxonomy and threat models, (2) domain-specific applications (e.g., malware, IDS,
ICS), (3) defense mechanisms and mitigation techniques, and (4) existing limitations
and research gaps. This thematic structure formed the basis of the review’s analysis
and presentation.

Taxonomy of Adversarial Attacks in Cybersecurity

Adversarial attacks against machine learning models in cybersecurity can be
categorized across multiple dimensions that reflect the attacker’s knowledge, timing,
goals, and application domain. Understanding these dimensions is crucial for
designing effective countermeasures.

Attack Knowledge
Adversarial attacks differ significantly based on what the attacker knows about the
target model:

e White-box attacks assume full knowledge of the model, including its
architecture, parameters, and training data (Ren et al., 2020). This enables
attackers to compute gradients and craft adversarial samples using powerful
methods like FGSM, JSMA, or Carlini & Wagner (C&W) attacks (Xi, 2020).

e Black-box attacks occur when the attacker has no internal access to the model
(Cui et al., 2020). Instead, they use input-output queries to build a substitute
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model or apply transferability principles (Hodes et al., 2024). Techniques such
as OnePixel or Zeroth-Order Optimization (ZOO) exemplify black-box
strategies (Alotaibi and Rassam, 2023).

Gray-box attacks lie between white-box and black-box. The attacker may
know the model architecture but not the parameters or may have access to only
part of the training data (Lin et al., 2021). Gray-box settings often occur in real-
world cybersecurity scenarios like malware analysis, where attackers guess or
learn some model traits through probing (Alotaibi and Rassam, 2023).

Attack Timing
This category differentiates whether the attack affects the model during training or

inference:

Evasion attacks modify input data at test time to bypass detection (Girhepuje
et al., 2024). In cybersecurity, this can involve altering malware binaries,
spoofing network traffic, or modifying API call sequences to be misclassified
as benign (Xi, 2020).

Poisoning attacks target the training data. Attackers inject carefully crafted
samples into the training set to corrupt the model’s behavior or implant
backdoors (Zhao et al., 2025). In IDS, poisoning can cause the system to
misclassify malicious traffic as benign in future sessions (Xi, 2020).

Model extraction and inversion attacks attempt to reconstruct the model or
its training data. For example, APIs can be exploited to approximate decision
boundaries or infer sensitive attributes from biometric models, posing serious
privacy risks (Chakraborty et al., 2021).

Specificity and Targeting

This

dimension considers whether the adversary has a specific goal in

misclassification:

Targeted attacks aim to force the model to predict a specific incorrect label
(Ododo and Addotey, 2025a). For example, a malware file could be designed
to appear exactly like a benign program (Rosenberg et al., 2021).
Indiscriminate attacks simply aim to degrade the model’s performance
overall, increasing misclassification rates without targeting a particular class
(Ododo and Addotey, 2025a). This is common in denial-of-service-style AML
attacks (Rosenberg et al., 2021).
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In binary classification settings like malware detection or spam filtering, targeted and
indiscriminate attacks may functionally overlap since forcing misclassification into
the only other class always achieves the attack objective.

Domain Context and Application Targets
Adversarial attacks manifest differently across cybersecurity domains, depending on
data structure, constraints, and the type of ML system deployed.

e Network Traffic / Intrusion Detection Systems (IDS): Adversaries craft
packets with modified headers, payload sizes, or timing patterns to bypass
anomaly or signaturebased detection. GAN-based attacks (e.g., IDSGAN) and
JSMA have been used to deceive DNN-based IDS trained on datasets like
CICIDS2017 (Alotaibi and Rassam, 2023).

e Malware Detection: Attacks often preserve the executable’s functionality
while altering features used by classifiers (e.g., injected benign strings or added
API calls). Gradient-based attacks and byte-level perturbation are common
here (Alotaibi and Rassam, 2023).

e [oT and Industrial Control Systems (ICS): In these domains, perturbations
must be stealthy and lightweight due to resource constraints. Adversarial
examples targeting ICS can modify sensor data in real-time, potentially leading
to physical system damage if left undetected (Anthi et al., 2021).

e Biometric Systems and Authentication: In biometric security, adversarial
perturbations to facial images, fingerprints, or speech patterns can bypass
authentication or impersonate authorized users. These attacks often involve
model inversion or data reconstruction (Chakraborty et al., 2021).

Application Domains and Case Studies

Adversarial machine learning has introduced new security risks across various cyber-
defense systems. These attacks vary in method and impact depending on the target
domain, and have been extensively studied in four critical areas: intrusion detection
systems (IDS), malware detection, industrial control systems (ICS), and multi-agent
reinforcement learning in cyber-physical systems. This section synthesizes literature
findings from each domain.

Intrusion Detection Systems (IDS)

Intrusion Detection Systems (IDS) are vital in detecting unauthorized access and
network anomalies. ML-based IDS, such as those using deep neural networks (DNNGs),
support vector machines (SVMs), or decision trees, have become increasingly popular
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for their high accuracy and adaptability to evolving threats (Alotaibi and Rassam,
2023). However, these systems are highly vulnerable to adversarial evasion attacks,
especially when adversaries can probe the model using black-box or gray-box
techniques (Alotaibi and Rassam, 2023).

Attacks such as FGSM, JSMA, DeepFool, and PGD have demonstrated effectiveness
in misleading IDS on datasets like NSL-KDD and CICIDS2017 (Alotaibi and Rassam,
2023). For example, adversaries can craft adversarial network traffic by perturbing
features like packet timing, header sizes, and byte sequences, causing classifiers to
label them as benign (Alotaibi and Rassam, 2023).The use of generative adversarial
networks (GANSs), such as IDSGAN, further enhances evasion success, producing
synthetic traffic that bypasses detection (Yan et al., 2022).

Malware Detection

Malware detection is another critical domain where ML models—especially static and
dynamic classifiers—are frequently attacked using functionality-preserving
adversarial examples. Static detection relies on file attributes like bytecode, opcode
sequences, and imported functions, while dynamic detection analyzes behaviors such
as API call patterns and memory use (Ibitoye et al., 2019).

Evasion attacks in this domain include byte padding, code injection, and control-flow
obfuscation, all of which maintain malicious behavior while avoiding detection (Yan
et al., 2022). Techniques such as MalGAN and GAPGAN utilize GANs to generate
adversarial binaries, significantly reducing detection rates by modern classifiers
(Ibitoye et al., 2019). Other models like EvadeDroid and AdvAttack manipulate
Android malware by iteratively injecting benign features or altering key API calls
(Ibitoye et al., 2019).

These attacks are not theoretical. In some cases, detection systems like MaMaDroid,
DREBIN, and Sec-SVM experienced evasion rates exceeding 70% (Ibitoye et al.,
2019). As adversarial-malware-as-a-service platforms emerge, the ease of generating
such evasive malware is becoming an operational concern (Anthi et al., 2021).

Industrial Control Systems (ICS)

Industrial Control Systems (ICS), used in smart grids, manufacturing, and water
treatment plants, are increasingly adopting ML-driven IDS solutions. These systems
often use supervised learning models like Random Forest, J48, and LSTM for anomaly
detection in sensor data and control commands (Anthi et al., 2021).

Adversarial attacks in ICS typically manipulate sensor readings or communication
signals to cause misclassification without interrupting operations. Techniques like
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JSMA have successfully altered input signals to evade IDS while preserving
functionality, even leading to safety hazards like pressure misreporting or actuator
delays (Anthi et al., 2021). These attacks are particularly dangerous because many ICS
environments rely on legacy hardware and operate in real time, limiting the capacity
to update defenses (Anthi et al., 2021).

Experimental work by Erba et al. demonstrated real-time evasion attacks against
RNNbased detectors using autoencoders, while other studies reported 6—-11% accuracy
degradation in classic classifiers under adversarial stress (Anthi et al., 2021).

Multi-Agent Systems and Reinforcement Learning

Reinforcement learning (RL) agents deployed in cyber-physical systems (CPS)—such
as autonomous vehicles, smart grids, and industrial robots—have shown
vulnerabilities to adversarial policies. These attacks manipulate either the agent’s
inputs or reward structures to mislead its learned behavior (Standen et al., 2025).
Studies by Lee et al. and Standen et al. introduced adversarial tactics against deep
reinforcement learning (DRL) agents using spatiotemporal constraints and action-
space poisoning (2025). These methods can cause agents to learn unsafe or suboptimal
behaviors, especially in cooperative or multi-agent settings like swarm robotics or
distributed control systems (Standen et al., 2025).

Attacks like Functional Adversarial Policies (FAP) and adversarial cheap talk have
also proven effective in reducing the trustworthiness of agent-based communication
and planning strategies (Standen et al., 2025). Research on STARCRAFT multi-agent
environments and CybORG simulations highlights the real-world feasibility of these
attacks (Standen et al., 2025).

Defense Mechanism

As adversarial attacks become more sophisticated, researchers have developed various
defense mechanisms to secure machine learning (ML) systems in cybersecurity. These
defenses span training, detection, architectural enhancements, and lifecycle
integration. Despite promising advances, most methods still face trade-offs between
robustness, scalability, generalization, and computational efficiency.

Adversarial Training

Adversarial training is one of the most commonly employed methods to improve
model robustness (ODODO and ADDOTEY, 2025b). It involves incorporating
adversarial samples—crafted using methods like FGSM or PGD—into the training
process to help the model learn to resist perturbations (Zhou et al., 2022). Notable
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strategies include standard min-max optimization, ensemble adversarial training, and
curriculum adversarial training. These approaches have shown strong defense
capabilities, especially in image and malware detection tasks (Xi, 2020) (Ibitoye et al.,
2019).

However, adversarial training suffers from significant limitations. It is
computationally expensive due to the iterative generation of adversarial samples,
especially for large-scale datasets like CIFAR-100 or NSL-KDD (Zhou et al., 2022).
Additionally, models trained with adversarial examples may overfit to specific
perturbation types and generalize poorly to unseen attacks (Ibitoye et al., 2019).
Recent improvements, such as Triplet Loss regularization and Latent Adversarial
Training, aim to address these concerns by enhancing latent space robustness (Zhou et
al., 2022).

Detection and Filtering

Detection-based defenses aim to identify adversarial inputs before they reach the
model. Notable strategies include feature squeezing and autoencoder-based detection.
Xu et al. introduced feature squeezing by reducing input variability through bit-depth
reduction and spatial smoothing, then comparing outputs between squeezed and
original samples to flag adversarial inputs (2025). Meng and Chen proposed the
MagNet framework, which employs multiple autoencoders and divergence detectors
to reform or reject suspicious inputs (2022).

These methods are generally lightweight and easy to implement, but they often suffer
from high false positives or can be bypassed by adaptive attacks that anticipate the
detector’s behavior. Furthermore, detection defenses are more effective in controlled
settings than in complex, real-world cybersecurity environments such as malware
traffic or ICS logs.

Model Hardening

Model hardening involves architectural or algorithmic changes that make models more
resilient to adversarial manipulation. One popular method is gradient masking
(Apruzzese et al., 2020; Garba et al., 2019), where gradients are hidden or obfuscated
to prevent attackers from computing effective perturbations (Wang et al., 2023).
However, this technique often fails against black-box attacks or transfer-based attacks
and may degrade model performance.

Other strategies include defensive distillation, where soft labels from a teacher
network are used to train a smaller student network (Wang et al., 2023), which smooths
decision boundaries and reduces vulnerability to attacks. Ensemble learning
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approaches—training multiple diverse models—can also increase robustness by
reducing the chance that a single attack is universally effective across models (Wang
et al., 2023).

Despite their promise, model hardening techniques often lead to reduced clean-data
accuracy or increased model complexity. As such, their deployment must balance
robustness with performance, especially in real-time systems.

Secure ML Lifecycle Integration

Most current defenses are post hoc solutions rather than proactive security measures
embedded in the ML development process. To address this, researchers and industry
leaders advocate for integrating adversarial resilience into the Secure Development
Lifecycle (SDL) (Olutimehin et al., 2025). This approach involves testing for
adversarial vulnerabilities at every stage of ML system development—design,
training, deployment, and monitoring (Kumar et al., 2020).

Industry case studies reveal that many organizations lack structured processes to
secure ML systems from adversarial threats. A survey of 28 companies across sectors
found that while SDL is widely known in software engineering, its adoption for ML
systems is still limited. Only a few organizations conducted adversarial testing before
deployment (Kumar et al., 2020).

Lifecycle-oriented frameworks propose systematic adversarial threat modeling,
curated repositories of known AML attacks (akin to the MITRE ATT&CK
framework), and regular security assessments of deployed models. These practices
mirror traditional secure coding standards and represent a promising direction for more
resilient ML cybersecurity systems (Kumar et al., 2020).

Challenges and Open Problems

Despite the progress in defending against adversarial attacks, several fundamental
challenges continue to hinder effective and scalable adversarial machine learning
(AML) defenses in cybersecurity contexts. These open problems span dataset realism,
evaluation frameworks, domain transferability, and attack realism.

Lack of Realistic Datasets

A major challenge in evaluating AML defenses is the scarcity of realistic, diverse, and
up-todate datasets (Eghaghe et al., 2024). Most AML research in cybersecurity uses
outdated or synthetic datasets such as NSL-KDD and CICIDS2017, which fail to
reflect current attack patterns, protocols, and network behaviors (He et al., 2023).
These datasets often lack the richness of real-world traffic, contain imbalanced class
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distributions, or are gathered in controlled environments that do not simulate
operational variability (He et al., 2023).

Moreover, privacy concerns and legal restrictions make it difficult to publicly release
datasets containing real user traffic or sensitive operational logs (Khaleel et al., 2024).
As a result, most defense strategies are not evaluated in production-grade scenarios,
making their real-world effectiveness uncertain. Future research should explore the
application of federated learning and transfer learning techniques to build realistic,
privacy-preserving datasets while maintaining generalizability (He et al., 2023).

Functionality-Preserving Evaluation

A core limitation of current AML defenses is their reliance on threat models adapted
from computer vision, where adversarial perturbations are designed to be
imperceptible to humans (Mintoo et al., 2024). This paradigm is inappropriate for
cybersecurity applications, where attackers must preserve the functionality of the
malware, payload, or attack traffic.

Studies by Demetrio et al. and Labaca-Castro et al. emphasize that modifications to
portable executable (PE) files or API call sequences must not corrupt the binary or
disable malicious behavior (2021). In IDS contexts, perturbations must maintain
protocol compliance, timing structure, and semantic behavior to avoid detection while
still executing the intended attack.

This requirement adds constraints not present in image or text domains. Yet, many
defenses continue to evaluate against adversarial samples generated without these
constraints. This mismatch leads to inflated defense scores and undermines progress
toward deployable solutions.

Generalizability Across Domains

Defenses that perform well in one cybersecurity application (e.g., NIDS) often fail
when transferred to others (e.g., ICS, malware detection). This lack of generalization
stems from the domain-specific nature of data formats, constraints, and operational
contexts.

For example, a defense designed for packet-level feature perturbation in an enterprise
IDS may be irrelevant for binary feature modification in Android malware detection.
Likewise, defenses tailored for static malware detection may not translate to ICS,
where sensor readings and actuation control loops follow temporal and physical laws.
This challenge necessitates the development of adaptive, modular, and domain-aware
AML defense architectures that can accommodate variability in feature types and
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threat models. A meta-learning approach to adversarial robustness—where models
adapt across task boundaries—remains a promising direction.

Lack of Standardized Benchmarks and Metrics

There is currently no unified framework for evaluating adversarial robustness in
cybersecurity ML models. This has led to fragmented research outputs, inconsistent
performance reporting, and difficulty in comparing defenses under standardized
conditions.

Benchmarks used in CV and NLP (e.g., ImageNet, GLUE) offer robust baselines, but
cybersecurity lacks such reference datasets, evaluation protocols, and scoring rubrics.
Furthermore, widely used metrics like accuracy and Fl-score are ill-suited to
adversarial contexts, especially when datasets are imbalanced or perturbations are
constrained by functionality.

Emerging metrics such as CLEVER, empirical robustness, and adversarial risk
surfaces should be explored and adapted to the cybersecurity setting. There is also a
need for benchmarking platforms and shared leaderboards to drive reproducibility and
comparative analysis.

Conclusion and Future Work

This literature review has explored the landscape of adversarial machine learning
(AML) in cybersecurity, highlighting the growing threat of adversarial attacks on ML-
based systems such as intrusion detection, malware analysis, and industrial control
networks. While progress has been made in categorizing attacks and developing
defensive strategies—such as adversarial training, input filtering, and model
hardening—most existing approaches remain domain-specific, computationally
expensive, and difficult to generalize. Key challenges identified include the lack of
realistic, attacker-aware datasets, the failure to evaluate functionality-preserving
adversarial inputs, and the absence of standardized benchmarks for fair comparison.
Furthermore, AML defense remains largely reactive, with minimal integration into the
broader machine learning development lifecycle. Future research should focus on
developing realistic datasets and adversarial testbeds, designing generalizable and
cross-domain defense frameworks, embedding AML resilience into secure ML
pipelines, and establishing common evaluation protocols. Addressing these challenges
will be crucial in building trustworthy and robust Al-driven cybersecurity systems
capable of resisting evolving, intelligent threats.
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