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Abstract 
Adversarial machine learning (AML) presents a critical threat to the integrity of 

machine learning (ML) systems deployed in cybersecurity, where adversarial 

examples can maintain malicious functionality while evading detection. This 

literature review synthesizes findings from 35 peer-reviewed sources to 

investigate the taxonomy, attack strategies, and defense mechanisms associated 

with AML in cybersecurity domains such as intrusion detection systems (IDS), 

malware analysis, industrial control systems (ICS), and reinforcement learning in 

cyber-physical systems. We categorize attacks based on knowledge level, timing, 

and specificity, and highlight the unique challenges of functionality-preserving 

adversarial inputs in discrete, protocol-constrained environments. The review 

further evaluates defensive techniques—including adversarial training, detection 

frameworks, model hardening, and secure lifecycle integration—and identifies 

key limitations such as domain-specific overfitting, poor generalizability, and lack 

of standardized benchmarks. We conclude by advocating for robust, adaptive 

defenses, attacker-aware datasets, and security-by-design approaches that embed 

adversarial resilience into the entire ML development lifecycle. 
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Model Robustness, Adversarial Training, Functionality-Preserving Attacks, 

Secure Machine Learning Lifecycle. 

 

 

Introduction 

The growing reliance on machine 

learning (ML) for cybersecurity 

applications—ranging from intrusion 

detection systems (IDS) to malware 

classification and biometric 

authentication—has revolutionized threat 

detection and system resilience (Okoli et 

al., 2024). These models can learn 

patterns in large datasets (Kalonde et al., 

2024), automate responses to known and 

unknown threats, and reduce the 

overhead of manual rule-based detection 

mechanisms (Xu et al., 2025). However, 

the very strength of these systems—their 

ability to generalize from data—has 

become a critical vulnerability. This 

weakness has given rise to adversarial 

machine learning (AML), which 

leverages deliberately crafted inputs, 

known as adversarial examples, to fool 

ML models into making incorrect 

predictions (Xi, 2020). 

Adversarial attacks pose a particularly 

severe threat in the cybersecurity domain. 

Unlike attacks in image classification—

where altered images may fool a 

classifier but have minimal real-world 

implications—adversarial attacks in 

cybersecurity often aim to preserve 

malicious functionality while evading 

detection (Rosenberg et al., 2021). For 

example, a slightly modified piece of 

malware must still be executable and 

dangerous even after the perturbation, 

which adds complexity to the attack 

scenario (Rosenberg et al., 2021). 

Furthermore, attackers in cybersecurity 

have clear incentives and often real-time 

feedback loops, making the threat 

landscape more dynamic and dangerous 

than in other ML application domains 

(Xi, 2020). 

Recent real-world demonstrations further 

underscore the threat. In the case of 

Cylance antivirus software, adversarial 

perturbations to benign files allowed 

them to bypass malware detection by 

altering only non-functional bytecode 

sections (Rosenberg et al., 2021; 

Demetrio et al., 2021). Similarly, 

adversarial network traffic has been 

crafted to evade even deep learning-based 

IDS systems, such as those trained on 

NSL-KDD and CICIDS2017 datasets 

(Xu et al., 2025; Saini et al., 2024). 

There are also significant domain-

specific challenges that differentiate 

cybersecurity-focused AML research 

from other domains. Many cybersecurity 

features—like API calls, packet headers, 

and opcode sequences—are discrete and 

semantically critical, making it difficult 

to apply common image-domain 

techniques like gradient perturbations  
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without breaking functionality (Ahsan et al., 2022; Rosenberg et al., 2021). 

Additionally, adversarial examples in cybersecurity must comply with protocol 

constraints, system policies, and functionality preservation, all while remaining 

undetected by both human analysts and automated systems (Li, 2024; McCarthy et al., 

2022). 

Despite growing attention, several challenges persist. Defense mechanisms such as 

adversarial training, input preprocessing, and anomaly detection often fail to 

generalize across domains, remain expensive to deploy in real-time systems, or can be 

bypassed by adaptive adversaries (Alobaid et al., 2025; Xu et al., 2025). Moreover, 

the lack of standardized benchmarks and publicly available functionality-preserving 

adversarial datasets hinders consistent evaluation of proposed defenses (Ibitoye et al., 

2019). 

This paper addresses these gaps through a structured literature review focused on the 

following objectives: 

1. To categorize adversarial attacks in cybersecurity using a unified taxonomy 

based on threat model, knowledge type, and attack strategy. 

2. To examine domain-specific impacts of AML across malware detection, 

biometric authentication, network traffic analysis, and cyber-physical systems. 

3. To synthesize the strengths and limitations of existing defense strategies 

including adversarial training, detection filters, and secure development 

integration. 

4. To identify open challenges and propose directions for future work, including 

real-world benchmarks, cross-domain defense strategies, and lifecycle-based 

robustness evaluation. 

In doing so, we aim to provide researchers and practitioners with a comprehensive 

foundation for developing secure, robust, and future-proof ML models in 

cybersecurity. 

 

Methodology 

This literature review followed a structured and systematic approach to ensure 

comprehensive coverage of adversarial machine learning (AML) research within the 

cybersecurity domain. Multiple academic databases were searched, including IEEE 

Xplore, ACM Digital Library, Elsevier ScienceDirect, SpringerLink, arXiv, and 

MDPI. These platforms were chosen for their relevance to computer science, 

information security, and machine learning research. 

The search strategy involved specific keywords designed to capture a wide range of 

studies related to adversarial attacks and defenses in cybersecurity. The primary search 
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terms included: “Adversarial Machine Learning,” “Adversarial Attacks in 

Cybersecurity,” “Evasion Attacks ML IDS,” “Adversarial Malware Detection,” and 

“AML defenses cybersecurity.” These terms were selected to encompass both 

theoretical foundations and practical implementations of AML in cybersecurity 

contexts. 

To maintain the quality and relevance of the review, strict inclusion criteria were 

applied. Only peer-reviewed articles published between 2018 and 2024 were 

considered. The review prioritized scholarly work that addressed AML applications in 

cybersecurity, including but not limited to survey papers, case studies, experimental 

evaluations, and conceptual frameworks. 

After removing duplicates and screening abstracts for relevance, a final corpus of 35 

papers was selected. These included several high-impact publications such as articles 

from ACM Computing Surveys, IEEE Transactions on Information Forensics and 

Security, and other reputable journals. Each paper was reviewed in full and analyzed 

for its contribution to understanding adversarial threats, defense strategies, system 

vulnerabilities, or evaluation frameworks. 

The selected articles were thematically categorized under four primary areas: (1) 

taxonomy and threat models, (2) domain-specific applications (e.g., malware, IDS, 

ICS), (3) defense mechanisms and mitigation techniques, and (4) existing limitations 

and research gaps. This thematic structure formed the basis of the review’s analysis 

and presentation. 

 

Taxonomy of Adversarial Attacks in Cybersecurity 

Adversarial attacks against machine learning models in cybersecurity can be 

categorized across multiple dimensions that reflect the attacker’s knowledge, timing, 

goals, and application domain. Understanding these dimensions is crucial for 

designing effective countermeasures. 

 

Attack Knowledge 

Adversarial attacks differ significantly based on what the attacker knows about the 

target model: 

• White-box attacks assume full knowledge of the model, including its 

architecture, parameters, and training data (Ren et al., 2020). This enables 

attackers to compute gradients and craft adversarial samples using powerful 

methods like FGSM, JSMA, or Carlini & Wagner (C&W) attacks (Xi, 2020). 

• Black-box attacks occur when the attacker has no internal access to the model 

(Cui et al., 2020). Instead, they use input-output queries to build a substitute 
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model or apply transferability principles (Hodes et al., 2024). Techniques such 

as OnePixel or Zeroth-Order Optimization (ZOO) exemplify black-box 

strategies (Alotaibi and Rassam, 2023). 

• Gray-box attacks lie between white-box and black-box. The attacker may 

know the model architecture but not the parameters or may have access to only 

part of the training data (Lin et al., 2021). Gray-box settings often occur in real-

world cybersecurity scenarios like malware analysis, where attackers guess or 

learn some model traits through probing (Alotaibi and Rassam, 2023). 

 

Attack Timing 

This category differentiates whether the attack affects the model during training or 

inference: 

• Evasion attacks modify input data at test time to bypass detection (Girhepuje 

et al., 2024). In cybersecurity, this can involve altering malware binaries, 

spoofing network traffic, or modifying API call sequences to be misclassified 

as benign (Xi, 2020). 

• Poisoning attacks target the training data. Attackers inject carefully crafted 

samples into the training set to corrupt the model’s behavior or implant 

backdoors (Zhao et al., 2025). In IDS, poisoning can cause the system to 

misclassify malicious traffic as benign in future sessions (Xi, 2020). 

• Model extraction and inversion attacks attempt to reconstruct the model or 

its training data. For example, APIs can be exploited to approximate decision 

boundaries or infer sensitive attributes from biometric models, posing serious 

privacy risks (Chakraborty et al., 2021). 

 

Specificity and Targeting 

This dimension considers whether the adversary has a specific goal in 

misclassification: 

• Targeted attacks aim to force the model to predict a specific incorrect label 

(Ododo and Addotey, 2025a). For example, a malware file could be designed 

to appear exactly like a benign program (Rosenberg et al., 2021). 

• Indiscriminate attacks simply aim to degrade the model’s performance 

overall, increasing misclassification rates without targeting a particular class 

(Ododo and Addotey, 2025a). This is common in denial-of-service-style AML 

attacks (Rosenberg et al., 2021). 
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In binary classification settings like malware detection or spam filtering, targeted and 

indiscriminate attacks may functionally overlap since forcing misclassification into 

the only other class always achieves the attack objective. 

 

Domain Context and Application Targets 

Adversarial attacks manifest differently across cybersecurity domains, depending on 

data structure, constraints, and the type of ML system deployed. 

• Network Traffic / Intrusion Detection Systems (IDS): Adversaries craft 

packets with modified headers, payload sizes, or timing patterns to bypass 

anomaly or signaturebased detection. GAN-based attacks (e.g., IDSGAN) and 

JSMA have been used to deceive DNN-based IDS trained on datasets like 

CICIDS2017 (Alotaibi and Rassam, 2023). 

• Malware Detection: Attacks often preserve the executable’s functionality 

while altering features used by classifiers (e.g., injected benign strings or added 

API calls). Gradient-based attacks and byte-level perturbation are common 

here (Alotaibi and Rassam, 2023). 

• IoT and Industrial Control Systems (ICS): In these domains, perturbations 

must be stealthy and lightweight due to resource constraints. Adversarial 

examples targeting ICS can modify sensor data in real-time, potentially leading 

to physical system damage if left undetected (Anthi et al., 2021). 

• Biometric Systems and Authentication: In biometric security, adversarial 

perturbations to facial images, fingerprints, or speech patterns can bypass 

authentication or impersonate authorized users. These attacks often involve 

model inversion or data reconstruction (Chakraborty et al., 2021). 

 

Application Domains and Case Studies 

Adversarial machine learning has introduced new security risks across various cyber-

defense systems. These attacks vary in method and impact depending on the target 

domain, and have been extensively studied in four critical areas: intrusion detection 

systems (IDS), malware detection, industrial control systems (ICS), and multi-agent 

reinforcement learning in cyber-physical systems. This section synthesizes literature 

findings from each domain. 

 

Intrusion Detection Systems (IDS) 

Intrusion Detection Systems (IDS) are vital in detecting unauthorized access and 

network anomalies. ML-based IDS, such as those using deep neural networks (DNNs), 

support vector machines (SVMs), or decision trees, have become increasingly popular 
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for their high accuracy and adaptability to evolving threats (Alotaibi and Rassam, 

2023). However, these systems are highly vulnerable to adversarial evasion attacks, 

especially when adversaries can probe the model using black-box or gray-box 

techniques (Alotaibi and Rassam, 2023). 

Attacks such as FGSM, JSMA, DeepFool, and PGD have demonstrated effectiveness 

in misleading IDS on datasets like NSL-KDD and CICIDS2017 (Alotaibi and Rassam, 

2023). For example, adversaries can craft adversarial network traffic by perturbing 

features like packet timing, header sizes, and byte sequences, causing classifiers to 

label them as benign (Alotaibi and Rassam, 2023).The use of generative adversarial 

networks (GANs), such as IDSGAN, further enhances evasion success, producing 

synthetic traffic that bypasses detection (Yan et al., 2022). 

 

Malware Detection 

Malware detection is another critical domain where ML models—especially static and 

dynamic classifiers—are frequently attacked using functionality-preserving 

adversarial examples. Static detection relies on file attributes like bytecode, opcode 

sequences, and imported functions, while dynamic detection analyzes behaviors such 

as API call patterns and memory use (Ibitoye et al., 2019). 

Evasion attacks in this domain include byte padding, code injection, and control-flow 

obfuscation, all of which maintain malicious behavior while avoiding detection (Yan 

et al., 2022). Techniques such as MalGAN and GAPGAN utilize GANs to generate 

adversarial binaries, significantly reducing detection rates by modern classifiers 

(Ibitoye et al., 2019). Other models like EvadeDroid and AdvAttack manipulate 

Android malware by iteratively injecting benign features or altering key API calls 

(Ibitoye et al., 2019). 

These attacks are not theoretical. In some cases, detection systems like MaMaDroid, 

DREBIN, and Sec-SVM experienced evasion rates exceeding 70% (Ibitoye et al., 

2019). As adversarial-malware-as-a-service platforms emerge, the ease of generating 

such evasive malware is becoming an operational concern (Anthi et al., 2021). 

 

Industrial Control Systems (ICS) 

Industrial Control Systems (ICS), used in smart grids, manufacturing, and water 

treatment plants, are increasingly adopting ML-driven IDS solutions. These systems 

often use supervised learning models like Random Forest, J48, and LSTM for anomaly 

detection in sensor data and control commands (Anthi et al., 2021). 

Adversarial attacks in ICS typically manipulate sensor readings or communication 

signals to cause misclassification without interrupting operations. Techniques like 
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JSMA have successfully altered input signals to evade IDS while preserving 

functionality, even leading to safety hazards like pressure misreporting or actuator 

delays (Anthi et al., 2021). These attacks are particularly dangerous because many ICS 

environments rely on legacy hardware and operate in real time, limiting the capacity 

to update defenses (Anthi et al., 2021). 

Experimental work by Erba et al. demonstrated real-time evasion attacks against 

RNNbased detectors using autoencoders, while other studies reported 6–11% accuracy 

degradation in classic classifiers under adversarial stress (Anthi et al., 2021). 

 

Multi-Agent Systems and Reinforcement Learning 

Reinforcement learning (RL) agents deployed in cyber-physical systems (CPS)—such 

as autonomous vehicles, smart grids, and industrial robots—have shown 

vulnerabilities to adversarial policies. These attacks manipulate either the agent’s 

inputs or reward structures to mislead its learned behavior (Standen et al., 2025). 

Studies by Lee et al. and Standen et al. introduced adversarial tactics against deep 

reinforcement learning (DRL) agents using spatiotemporal constraints and action-

space poisoning (2025). These methods can cause agents to learn unsafe or suboptimal 

behaviors, especially in cooperative or multi-agent settings like swarm robotics or 

distributed control systems (Standen et al., 2025). 

Attacks like Functional Adversarial Policies (FAP) and adversarial cheap talk have 

also proven effective in reducing the trustworthiness of agent-based communication 

and planning strategies (Standen et al., 2025). Research on STARCRAFT multi-agent 

environments and CybORG simulations highlights the real-world feasibility of these 

attacks (Standen et al., 2025). 

 

Defense Mechanism 

As adversarial attacks become more sophisticated, researchers have developed various 

defense mechanisms to secure machine learning (ML) systems in cybersecurity. These 

defenses span training, detection, architectural enhancements, and lifecycle 

integration. Despite promising advances, most methods still face trade-offs between 

robustness, scalability, generalization, and computational efficiency. 

 

Adversarial Training 

Adversarial training is one of the most commonly employed methods to improve 

model robustness (ODODO and ADDOTEY, 2025b). It involves incorporating 

adversarial samples—crafted using methods like FGSM or PGD—into the training 

process to help the model learn to resist perturbations (Zhou et al., 2022). Notable 
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strategies include standard min-max optimization, ensemble adversarial training, and 

curriculum adversarial training. These approaches have shown strong defense 

capabilities, especially in image and malware detection tasks (Xi, 2020) (Ibitoye et al., 

2019). 

However, adversarial training suffers from significant limitations. It is 

computationally expensive due to the iterative generation of adversarial samples, 

especially for large-scale datasets like CIFAR-100 or NSL-KDD (Zhou et al., 2022). 

Additionally, models trained with adversarial examples may overfit to specific 

perturbation types and generalize poorly to unseen attacks (Ibitoye et al., 2019). 

Recent improvements, such as Triplet Loss regularization and Latent Adversarial 

Training, aim to address these concerns by enhancing latent space robustness (Zhou et 

al., 2022). 

 

Detection and Filtering 

Detection-based defenses aim to identify adversarial inputs before they reach the 

model. Notable strategies include feature squeezing and autoencoder-based detection. 

Xu et al. introduced feature squeezing by reducing input variability through bit-depth 

reduction and spatial smoothing, then comparing outputs between squeezed and 

original samples to flag adversarial inputs (2025). Meng and Chen proposed the 

MagNet framework, which employs multiple autoencoders and divergence detectors 

to reform or reject suspicious inputs (2022). 

These methods are generally lightweight and easy to implement, but they often suffer 

from high false positives or can be bypassed by adaptive attacks that anticipate the 

detector’s behavior. Furthermore, detection defenses are more effective in controlled 

settings than in complex, real-world cybersecurity environments such as malware 

traffic or ICS logs. 

 

Model Hardening 

Model hardening involves architectural or algorithmic changes that make models more 

resilient to adversarial manipulation. One popular method is gradient masking 

(Apruzzese et al., 2020; Garba et al., 2019), where gradients are hidden or obfuscated 

to prevent attackers from computing effective perturbations (Wang et al., 2023). 

However, this technique often fails against black-box attacks or transfer-based attacks 

and may degrade model performance. 

Other strategies include defensive distillation, where soft labels from a teacher 

network are used to train a smaller student network (Wang et al., 2023), which smooths 

decision boundaries and reduces vulnerability to attacks. Ensemble learning 
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approaches—training multiple diverse models—can also increase robustness by 

reducing the chance that a single attack is universally effective across models (Wang 

et al., 2023). 

Despite their promise, model hardening techniques often lead to reduced clean-data 

accuracy or increased model complexity. As such, their deployment must balance 

robustness with performance, especially in real-time systems. 

 

Secure ML Lifecycle Integration 

Most current defenses are post hoc solutions rather than proactive security measures 

embedded in the ML development process. To address this, researchers and industry 

leaders advocate for integrating adversarial resilience into the Secure Development 

Lifecycle (SDL) (Olutimehin et al., 2025). This approach involves testing for 

adversarial vulnerabilities at every stage of ML system development—design, 

training, deployment, and monitoring (Kumar et al., 2020). 

Industry case studies reveal that many organizations lack structured processes to 

secure ML systems from adversarial threats. A survey of 28 companies across sectors 

found that while SDL is widely known in software engineering, its adoption for ML 

systems is still limited. Only a few organizations conducted adversarial testing before 

deployment (Kumar et al., 2020). 

Lifecycle-oriented frameworks propose systematic adversarial threat modeling, 

curated repositories of known AML attacks (akin to the MITRE ATT&CK 

framework), and regular security assessments of deployed models. These practices 

mirror traditional secure coding standards and represent a promising direction for more 

resilient ML cybersecurity systems (Kumar et al., 2020). 

 

Challenges and Open Problems 

Despite the progress in defending against adversarial attacks, several fundamental 

challenges continue to hinder effective and scalable adversarial machine learning 

(AML) defenses in cybersecurity contexts. These open problems span dataset realism, 

evaluation frameworks, domain transferability, and attack realism. 

 

Lack of Realistic Datasets 

A major challenge in evaluating AML defenses is the scarcity of realistic, diverse, and 

up-todate datasets (Eghaghe et al., 2024). Most AML research in cybersecurity uses 

outdated or synthetic datasets such as NSL-KDD and CICIDS2017, which fail to 

reflect current attack patterns, protocols, and network behaviors (He et al., 2023). 

These datasets often lack the richness of real-world traffic, contain imbalanced class 
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distributions, or are gathered in controlled environments that do not simulate 

operational variability (He et al., 2023). 

Moreover, privacy concerns and legal restrictions make it difficult to publicly release 

datasets containing real user traffic or sensitive operational logs (Khaleel et al., 2024). 

As a result, most defense strategies are not evaluated in production-grade scenarios, 

making their real-world effectiveness uncertain. Future research should explore the 

application of federated learning and transfer learning techniques to build realistic, 

privacy-preserving datasets while maintaining generalizability (He et al., 2023). 

 

Functionality-Preserving Evaluation 

A core limitation of current AML defenses is their reliance on threat models adapted 

from computer vision, where adversarial perturbations are designed to be 

imperceptible to humans (Mintoo et al., 2024). This paradigm is inappropriate for 

cybersecurity applications, where attackers must preserve the functionality of the 

malware, payload, or attack traffic. 

Studies by Demetrio et al. and Labaca-Castro et al. emphasize that modifications to 

portable executable (PE) files or API call sequences must not corrupt the binary or 

disable malicious behavior (2021). In IDS contexts, perturbations must maintain 

protocol compliance, timing structure, and semantic behavior to avoid detection while 

still executing the intended attack. 

This requirement adds constraints not present in image or text domains. Yet, many 

defenses continue to evaluate against adversarial samples generated without these 

constraints. This mismatch leads to inflated defense scores and undermines progress 

toward deployable solutions. 

 

Generalizability Across Domains 

Defenses that perform well in one cybersecurity application (e.g., NIDS) often fail 

when transferred to others (e.g., ICS, malware detection). This lack of generalization 

stems from the domain-specific nature of data formats, constraints, and operational 

contexts. 

For example, a defense designed for packet-level feature perturbation in an enterprise 

IDS may be irrelevant for binary feature modification in Android malware detection. 

Likewise, defenses tailored for static malware detection may not translate to ICS, 

where sensor readings and actuation control loops follow temporal and physical laws. 

This challenge necessitates the development of adaptive, modular, and domain-aware 

AML defense architectures that can accommodate variability in feature types and 



304  africascholarpublications@gmail.com                                                                               
 FEBRUARY, 2025 

 

threat models. A meta-learning approach to adversarial robustness—where models 

adapt across task boundaries—remains a promising direction. 

 

Lack of Standardized Benchmarks and Metrics 

There is currently no unified framework for evaluating adversarial robustness in 

cybersecurity ML models. This has led to fragmented research outputs, inconsistent 

performance reporting, and difficulty in comparing defenses under standardized 

conditions. 

Benchmarks used in CV and NLP (e.g., ImageNet, GLUE) offer robust baselines, but 

cybersecurity lacks such reference datasets, evaluation protocols, and scoring rubrics. 

Furthermore, widely used metrics like accuracy and F1-score are ill-suited to 

adversarial contexts, especially when datasets are imbalanced or perturbations are 

constrained by functionality. 

Emerging metrics such as CLEVER, empirical robustness, and adversarial risk 

surfaces should be explored and adapted to the cybersecurity setting. There is also a 

need for benchmarking platforms and shared leaderboards to drive reproducibility and 

comparative analysis. 

 

Conclusion and Future Work 

This literature review has explored the landscape of adversarial machine learning 

(AML) in cybersecurity, highlighting the growing threat of adversarial attacks on ML-

based systems such as intrusion detection, malware analysis, and industrial control 

networks. While progress has been made in categorizing attacks and developing 

defensive strategies—such as adversarial training, input filtering, and model 

hardening—most existing approaches remain domain-specific, computationally 

expensive, and difficult to generalize. Key challenges identified include the lack of 

realistic, attacker-aware datasets, the failure to evaluate functionality-preserving 

adversarial inputs, and the absence of standardized benchmarks for fair comparison. 

Furthermore, AML defense remains largely reactive, with minimal integration into the 

broader machine learning development lifecycle. Future research should focus on 

developing realistic datasets and adversarial testbeds, designing generalizable and 

cross-domain defense frameworks, embedding AML resilience into secure ML 

pipelines, and establishing common evaluation protocols. Addressing these challenges 

will be crucial in building trustworthy and robust AI-driven cybersecurity systems 

capable of resisting evolving, intelligent threats. 
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